
SPE EVALUATION OF A
 CLIENT / SERVER APPLICATION

This paper presents the results of a software performance evaluation of a client/server
application in an Open Systems environment. Some interesting features of the design
and the graphical user interface are described and their performance characteristics are
evaluated. The evaluation uses a new Software Performance Engineering (SPE) tool to
create software models and evaluate design alternatives.

INTRODUCTION

This study is part of a larger effort to build performance
into a new, large open system application. The
system development calls for an initial prototype to
demonstrate system features and performance. After
the prototype evaluation, appropriate changes will be
made and the full system will be constructed. This
paper presents an SPE evaluation of the prototype
system. The prototype is a small piece of the
eventual system and reflects only one facet of the
Client/Server design. This paper presents an
approach to SPE evaluation of a Client/Server system
that can be easily extended to larger system
evaluations.

Due to the sensitive nature of the application and its
development stage, the actual case study is not
presented in this paper. Instead we substitute other
scenarios that contain the essence of the original
system, some key development decisions,
performance-drivers, and representative resource
requirements. Readers will learn about the significant
performance features of such a system, but the results
presented do not reflect the system’s actual
performance metrics.

The system will be a Client/Server application. In this
hypothetical case study, users will interact with the
client to manage automobile rental reservations made
by customers. They will take reservation information:
the location, customer information, the vehicle
reserved, how the customer will pay for the rental,
when and where the customer will arrive, an optional
pre-approval of the transaction, and other pertinent
details. Users will answer questions for customers
about the status of previous reservations, and update
reservation information when the car is picked up and
returned. Other features in the full system will support
inventory management and accounting applications.

This study focuses on the reservation prototype. Both
the client and the server processing will execute on
Sun workstations under Solaris. The database
management system is SYBASE, and the Graphical
User Interface (GUI) will be built with the Uniface
product.

Uniface provides developers several features to define
the graphical user interface. Features for the
performance evaluation include:

• the capability to perform designated actions after a
user enters data into a screen field and tabs to the
next field.

• an easy mechanism for specifying on-screen
buttons and the actions to be performed after the
button is selected.

• a pop-up list feature that selects all the list
contents and then displays a scrollable list. A
subset of the list contents is displayed in the list
window.

• the capability to perform designated actions when
the user leaves a screen.

• a trace facility that reports the SQL generated and
amount of data returned by the server.

A new Software Performance Engineering tool,
SPE•ED™ 1 is used to evaluate the performance of
the hypothetical case study.

1 SPE•ED™ is a trademark of Performance Engineering
Services.

Connie U. Smith, Ph.D. Bernie Wong
Performance Engineering Services SHL Systemhouse

PO Box 2640 50 O’Connor St. Suite 501
Santa Fe, NM 87504 Ottawa, Ontario, Canada K1P 6L2

(505) 988-3811 (613) 236-6604

SOFTWARE MODEL

The first step in the analysis is to identify workloads to
be modeled. Typically a small percentage of the user
tasks account for the majority of the computer
resource usage. The workload analysis could easily
fill another paper and the results were sensitive, so it
is not covered here. We discuss three user tasks for
the initial analysis: Reservation, Pick up auto and
Return auto. The Reservation task is illustrated in
detail.

The Reservation task uses up to four screens: the first
captures the customer and car information; the
second captures the financial information; the third
captures arrival information and schedules cars in
inventory. An optional screen automatically approves
certain transactions. The user interacts with the client
screens. User actions on the client result in the
Uniface GUI sending SQL to SYBASE on the server.
For example, when the user enters data into a screen
field and tabs to the next field, the Uniface GUI sends
SQL to SYBASE on the server to validate the data
entered; and when the user selects buttons on the
screen, Uniface creates a pop-up list by sending
multiple SQL statements to the server.

After identifying the processing steps, we represented
the interactions among facilities with a multi-column
chart like the one shown in Table 1. Each column
represents a facility in a distributed system. The items
in each column represent the processing steps that
execute on that facility. Each column will be a
separate scenario in the model. For the initial
analysis, however, we chose the scenario that will
likely be the most critical. A preliminary analysis
indicated that the initial SPE evaluation should focus
on the Server to ensure that it can support the required
number of users. Communications will be via a high-
speed LAN. If the network had involved a slower-
speed LAN or a WAN, the network component would

have been included in the initial model [MILL93;
SWIN92].

The first model depicts the arrival of these commands
on the server and represents the processing on other
facilities by a delay between the arrival of commands.
This high level processing is depicted in SPE•ED™
with the execution graph shown in the large area of the
screen in Figure 1. The first three nodes in the graph
are expanded nodes. Subgraphs describe their
processing steps. A “world view” of the entire model is
shown in the small Navigation boxes on the right side
of the screen. The correspondence between an
expanded node and its subgraph is shown through
color. For example, the ‘Reserve item screen’
expanded node and each basic node in the top-right
navigation box is turquoise.

Figure 2 shows the details of the Reserve item screen.
The screen has three buttons that enable users to pop
up lists of allowable entries and select one. The first
step in the graph is a Case node. Each outcome of
the Case is depicted with an attached Basic node. If
the user selects the first button a pop-up list of all the
cities appears. If the user enters the city code, a direct
query retrieves the city information. Figure 2 reflects a
best case model: the probability that the user selects
the list button is 0 and the probability that the user
enters the city code is 1. Similarly, the best case
model sets the probability of selecting the customer list
and the auto list to 0.

Note that the software model represents an end-to-end
user task that spans several screens. This lets us
examine the performance for each individual screen as
well as the total time to process a user task. We will
examine the performance for a range of workload
intensities: from 1 to 250 users sharing the server.

Table 1. Distributed Processing Table

Client Network Server

Enter city code –>Msg to server –>SQL: Retrieve city

(Assume OK) <– Return results <–

Enter cust id –>Msg to server –>SQL: Retrieve cust info

(Assume OK) <– Return results <–

Press button –>Msg to server –>SQL: Retrieve auto
types

Select from list <– Return results <–

Enter auto code –>Msg to server –>SQL: Retrieve auto info

<– Return results <–

(etc.)

