
S O F T W A R E E N G I N E E R I N G R E S E A R C H

 2 6 4 R I D G E V I E W L A N E B O U L D E R , C O L O R A D O (3 0 3) 9 3 8 - 9 8 4 7 F A X : (3 0 3) 4 4 3 - 5 2 7 9

Information Requirements for
Software Performance Engineering

Lloyd G. Williams† and Connie U. Smith§

†Software Engineering Research, Boulder, Colorado USA
§Performance Engineering Services, Santa Fe, New Mexico USA

Copyright © 1995, Performance Engineering Services and Software Engineering Research

All rights reserved

This material may not be sold, reproduced or distributed without written permission from
Performance Engineering Services or Software Engineering Research

This material is based upon work supported by the National Science Foundation
under award number DMI-9361824. Any opinions, findings, and conclusions

or recommendations expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

- 2 -

1 Introduction

The design and construction of future software systems will require the integration of
software analysis and design methods with Software Performance Engineering (SPE)
[Smith, 1990 #485]. Software methods provide rules and guidelines for performing
systems analysis and designing software. Software Performance Engineering [Smith,
1990 #480] is a method for constructing software systems that meet performance goals.
SPE includes techniques for gathering data, coping with uncertainty, constructing and
evaluating performance models, evaluating alternatives, and verifying and validating
results. It also includes strategies for the effective use of these techniques.

Software methods and SPE methods evolved independently. As a result, there are
several barriers to their integration. The notations used for constructing
analysis/design models and SPE models are very different. In addition, the
information maintained in the repositories of CASE tools that support software
analysis/design methods contain some, but not all, of the data needed by SPE tools.
Finally, software analysis/designers are rarely trained in SPE methods and techniques.
Typically, software designs are created by one team while their performance is
analyzed by another. This artificial division means that there is little opportunity to
explore design alternatives based on their performance characteristics.

There is, however, no reason why current software analysis/design methods and SPE
cannot be more closely integrated. This integration would allow software designers to
explore design alternatives and select a design that provides the best overall
combination of understandability, reusability, modifiability and performance. Easy,
early evaluation of performance alternatives would also help to eliminate the “fix-it-
later” approach in which performance issues are ignored until after the software has
been constructed. Performance problems discovered after the software has been
implemented are typically addressed by tuning, a process which can introduce errors
and ruin a carefully constructed design. In addition, systems that have been tuned
rarely perform as well as those that have been designed with performance in mind.

This paper explores the information requirements for Software Performance
Engineering and their relationship to the process used and information gathered in
contemporary systems analysis and software design methods. We begin by cataloging
the information needed to construct and evaluate early life-cycle performance models.
This information is then used to construct a Software Performance Engineering meta-
model. This SPE meta-model can be used to define the performance information that
should be captured during the analysis and design process. Most, or all of this
information could be captured by current CASE tools. The meta-model can also serve
as the basis for defining an transfer format that allows CASE tools to export
performance data to performance modeling tools for evaluation.

2 Related Work

In the research community, there are several notable approaches to integration of CASE
and SPE. The CAEDE system, developed at Carleton University, is a comprehensive

- 3 -

CASE tool that includes analytic performance models of reactive systems under design
[Woodside, 1989 #622]. The performance models are based on Rendezvous nets and
thus permit the analysis of Ada Rendezvous. They are, however, adapted to problems
encountered in telecommunication system design, thus the performance metrics they
produce focus on throughput measures rather than response time compliance.

Likewise, the Microelectronics and Computer Technology Corporation (MCC) has
incorporated performance analysis capabilities into Verdi, their visual tool for designing
distributed systems [Shen, 1990 #779]. Among other functions, it depicts a color
“animation” of system behavior (by highlighting line drawings of the design) and
reports times (mean, variance, and distribution) between start and end markers.

Martin proposed data-action graphs as a representation that facilitates the integration of
various software design notations and a performance simulator [Martin, 1988 #1246].
Rolia extends the SPE models and methods to address systems of cooperating processes
in a distributed and multicomputer environment with specific applications to Ada
[Rolia, 1992 #621]. Woodside proposes stochastic rendezvous networks to evaluate
performance of Ada systems [Woodside, 1989 #622]; and Woodside and co-workers
incorporate the analysis techniques into a software engineering tool [Woodside, 1991
#623], [Buhr, 1989 #96]. Baldasarri and coworkers integrate a petri net design notation
into a CASE tool that provides performance results [Baldassari, 1989 #613]. Lor and
Berry automatically generate SARA models from a requirements specification language
using a knowledge-based Design Assistant [Lor, 1991 #1247]. Valderruten and
colleagues use performance annotations with LOTOS process algebra specifications and
apply a set of rules to produce a queueing network model in [Valderruten, 1992 #1251].

Opdahl and Sølvberg augment information system models and performance models
with extended specifications [Opdahl, 1992 #1248]. Opdahl describes an SPE tool
interfaced with the PPP CASE tool and the IMSE environment for performance
modeling – both are part of the European Esprit research initiative. The IMSE is a
comprehensive environment to support performance modeling [Opdahl, 1992 #1249]. It
interfaces a number of different system performance modeling tools, but has no
automatic translation between them. It provides support for model creation and model
experimentation. Opdahl's tool supports data acquisition from the PPP CASE tool and
supports the initial model creation SPE step. It is an important step for the Esprit
project which seeks to integrate a complementary set of tools into a comprehensive
development environment.

These approaches focus on an integrated tool set that has both software design and
performance analysis features. This paper formally defines the information
requirements for SPE independent of the tool used for performance analysis or software
design. This definition, the SPE meta-model, serves two purposes. The first is to
provide a rigorous definition for the information requirements for early lifecycle
Software Performance Engineering. This model is valuable to performance analysts
since it is the first rigorous definition of SPE information requirements. It is valuable to
CASE tool vendors since it defines the information that they must capture if they are to
support SPE functions. The second purpose served by the meta-model is to form the
basis for defining an interchange format so that CASE and performance tools can

- 4 -

exchange information. The meta-model currently defines the information that must be
exported by a CASE tool to a performance tool.

3 Information Requirements for Early Life-Cycle Performance Analysis

Performance analysts need a number of different pieces of information in order to
construct and evaluate early life-cycle performance models. These information
requirements fall into the following categories [Smith, 1990 #480]:

• performance objectives
• workload specifications
• software plans
• execution environment
• resource requirements
• processing overhead

Workload specifications and software plans are, together, used to construct performance
scenarios which are the basis for performance models.

The particular information required in each category depends strongly on the problem
at hand. In many cases, it may also be possible to express the information in several
different ways. Currently, determining what information is required and the most
appropriate way of expressing it requires expert judgment. For example, performance
goals depend on how the software will be used and whether response time or
throughput is most important. Resource requirement specifications depend on the type
of system that the software will execute on and the devices most likely to be
bottlenecks.

The following sections describe these information requirements in more detail.

3.1 Performance Objectives

Performance objectives specify quantitative criteria for evaluating the performance
characteristics of the system under development. These objectives may be expressed in
several different ways, including: response time, throughput, or constraints on resource
usage. For information systems, response time is typically described from a user
perspective, i.e., the number of seconds to respond to a user request. Throughput
requirements are specified as a number of transactions to be processed per unit time.

For real time systems, response time is given as the amount of time required to respond
to a given external event. Throughput is specified as the number of events to be
processed per unit of time. Jaffe and Leveson [Jaffe, 1991 #628] distinguish two
components of throughput for real-time systems: capacity and load. Capacity refers to
the number of events of a given type that the system must be able to process in a given
amount of time. Load refers to the number of events of (multiple) different types that
must be processed in a given amount of time. For each kind of event, Jaffe and Leveson
recommend defining a minimum and maximum arrival rate.

- 5 -

Resource constraints describe limits on the amount of services required from key
devices in the hardware configuration. These may be expressed as constraints on
processor utilization (e.g., percent of CPU capacity), limitations on memory use, and so
on.

3.2 Performance Scenarios

Performance scenarios model a particular use of the system and the demands that it
makes on the available resources. The model can be used to predict the performance
characteristics of the proposed software. The required information includes workload
specifications to describe the scenario and its usage intensity as well as software plans
to describe the processing steps that execute.

3.2.1 Workload Specifications
A workload specification consists of

• a description of a specific use of the system, and
• the workload intensity for each request

The most frequently used functions determine the overall performance of the system.
Thus, early-lifecycle SPE workload descriptions focus on the most frequent uses of the
system. The workload description includes the specific functions required for each use of
the system being modeled and the order in which they are requested.

The workload intensity specifies the rate at which each use of the system being modeled
is requested. For interactive systems, the intensity may be expressed either as the
arrival rate for requests or, for multi-user systems, the number of concurrent users and
the amount of time between their requests. For real-time systems, the intensity is
described in terms of the arrival rate of the events that trigger and sustain the workload.

3.2.2 Software Plans
The software plans describe the software execution path(s) for each workload. The
software plans should specify the software components that execute, the order in which
they execute, and any repetition as well as conditional and/or parallel execution of
components for the corresponding workload.

Several different notations for describing software plans are available. Execution
graphs [Smith, 1990 #480] have become a de facto standard among those who model
performance. Execution graphs represent software components as nodes. A software
component is a collection of program statements, procedures, and abstract machine
calls that represents a logical function in the design. Transfer of control between
components is represented by arcs.

3.3 Execution Environment

The execution environment describes the platform on which the proposed system will
execute. This virtual machine consists of a hardware configuration as well as the
operating system and other software that interfaces with the proposed system.

- 6 -

3.3.1 Hardware Facility
The hardware facility is specified by identifying the key devices that are used to
perform processing and their interconnections.

3.3.2 Service Times
Service times reflect the performance-related characteristics of the execution
environment. For a processor, service time would normally be the amount of time
required to execute an instruction. For I/O devices, one typically specifies the average
time required to execute an I/O. Specifications for other types of devices depend on the
device type and the type(s) of performance problems that can be expected. For
example, with a network, one might be concerned with transmission speed, message
processing overhead, or both.

3.4 Resource Requirements

Resource requirements estimate the amount of service required from key devices in the
hardware configuration. Software plans typically specify resource requirements for
processing steps in terms of the software resources (e.g., operating system calls or
database accesses) that they use rather than primitive device services, such as CPU
instructions. The processing overhead specification is then used to translate resource
requirements into service time(s) on individual devices.

3.5 Processing Overhead

Processing overhead maps software resources onto device services. An overhead
specification for a particular software resource type would list the devices used by that
resource type and the amount of service required from each device. For example, a
particular database access might require both some number of CPU instructions and
several physical I/Os on a given disk.

4 SPE Meta-Model

From the above information, it is possible to derive a model of the information required
to perform an SPE study. This model is known as the SPE meta-model since it is a
model of the information that goes into constructing an SPE model.†

Note that this meta-model is different from the Performance Model Interchange Format
(PMIF) discussed in [Smith, 1994 #1213]. The PMIF defines information exchanged
between performance tools while the meta-model described here defines information to
be exchanged between CASE and performance tools.

This section begins with a discussion of the techniques considered for formally
representing the meta-model. The representation technique selected is then described.
This is followed by a description of the SPE meta-model.

† The terminology surrounding multiple layers of models can be confusing to the uninitiated. A model

contains some information. This information might, for example, be about the performance
characteristics of some piece of software. A meta-model is a model of the information contained in a
model; i.e., it models the model. A meta-meta-model is a model of the information contained in a meta-
model.

- 7 -

4.1 Meta-Model Representation Techniques

Several different techniques for representing the SPE meta-model were considered.
These include: entity-relationship models, class diagrams, and the EIA/CDIF approach.
The relative merits of each of these is discussed briefly below.

4.1.1 Entity-Relationship Models
Entity-relationship (ER) models [Chen, 1976 #115] describe the static information
structure of a problem by using entities to represent the principal abstractions of the
problem. Binary relationships represent associations among those abstractions. Pure
entity relationship models are somewhat restricted. They cannot represent hierarchical
or taxonomic relationships between entities. In addition, relationships involving three
or more entities must be decomposed and represented as binary relationships.

Entity-relationship models may be extended in a number of ways. Entity-relationship-
attribute (ERA) models include attributes, which represent characteristics of entities.
Other extensions include n-ary relationships, supertype/subtype relationships
(generalization/specialization), and associative abstractions. Some modeling schemes
also include an aggregation relationship which represents the situation where one
entity is composed of instances of other entities.

A number of graphical representations have been used for ER and ERA models.
Examples include: [Chen, 1977 #114], [Teorey, 1986 #520], [Blaha, 1988 #62], and
[Shlaer, 1988 #475].

4.1.2 Class Diagrams
Class diagrams are used by most object-oriented methods to show the object classes that
make up an application domain and the relationships among them. Class diagrams are
essentially extended ERA diagrams that include supertype/subtype and aggregation
relationships. Some approaches to constructing class diagrams also include associative
objects and/or n-ary relationships. Others (e.g., [Booch, 1994 #1089]) include modeling
constructs, such as meta-classes or parameterized classes, which are specific to object-
oriented programming languages.

Again, several different graphical notations have been used for constructing class
diagrams. The most widely known are the OMT (Object Modeling Technique) notation
[Rumbaugh, 1991 #455] and the Booch notation [Booch, 1994 #1089].

4.1.3 EIA/CDIF Approach
This approach is described in the draft EIA/CDIF (E lectronic I ndustries

 A ssociation/ C ASE D ata I nterchange F ormat) standard [EIA, 1994 #1212]. CDIF is
actually a family of standards that describe a mechanism for transferring information
between CASE tools. The standards define a transfer format that allows tools that have
different internal databases and storage formats to exchange information. An exchange
takes place via a file and internal tool information is translated to and from the file’s
transfer format.

In the CDIF standard, the information to be transferred between two tools is known as a
model. The contents of a model are defined using a meta-model. A meta-model defines

- 8 -

the information structure of a small area of CASE (such as data modeling or data-flow
diagrams) known as a “Subject Area.” Each meta-model is, in turn, defined using a
meta-meta-model. The meta-meta-model is based on the Entity-Relationship-Attribute
(ERA) approach. It supports:

• binary relationships (ternary and higher-order relationships are not allowed)
• cardinality constraints on relationships (one-to-one, many-to-many, etc.)
• relationships with attributes
• associative entities
• subtyping or inheritance (including multiple inheritance)

The meta-meta-model also includes a graphical notation for describing meta-models.
This notation supports the following concepts:

• entities: denoted by rectangles
• relationships: denoted by arrows
• relationship cardinality: indicated by a minimum:maximum annotation next to

the appropriate entity symbol
• subtyping (inheritance): denoted by a line connecting the supertype(s) and

subtype(s). (Note: A supertype must be drawn above its subtype(s).)

The CDIF meta-meta-model can be used to define a Software Performance Engineering
meta-model. The SPE meta-model would define a CDIF “Subject Area.” A CDIF
Transfer Format could then be used to define a standard format for transferring SPE
information between tools.

4.2 Meta-Model Representation

The representation technique selected for this project combines the EIA/CDIF approach
with object-oriented class diagrams. Basing the meta-model on the CDIF standard
makes it possible to use one of the CDIF Transfer Formats to define an SPE interchange
format in the future. Using an object-oriented notation overcomes several significant
limitations of the CDIF graphical notation. The first is the lack of specific symbols for
representing inheritance. Because CDIF does not have a symbol for inheritance,
supertypes and subtypes must be indicated by placing the supertype above its
subtype(s). This can make the diagram less readable and limits layout possibilities. A
second limitation of the CDIF notation is the lack of a specific symbol for representing
aggregation relationships. Although aggregation could be indicated using ordinary
relationships with a label such as “IsComposedOf,” this relationship occurs frequently
enough that it is advantageous to use a special symbol to denote it. Finally, the CDIF
notation does not include a symbol for denoting associative entities. An associative
entity represents a relationship between two other entities. While associative entities
can often be identified by inspecting their attributes,§ they occur frequently enough that
it is advantageous to use a special symbol to denote them.

The graphical notation selected for this project is a subset of the OMT object-model
notation developed by Rumbaugh, et. al. [Rumbaugh, 1991 #455]. This notation

§ An associative entity will contain identifier attributes for each of the entities that it associates.

- 9 -

includes graphical syntax for inheritance as well as for composite and associative
entities and, thus, overcomes the limitations encountered with the EIA/CDIF graphical
notation. To maintain compatibility with the CDIF standard, however, we restrict
relationships to be binary. The relevant elements of the OMT notation are summarized
in Appendix A.

4.3 Meta-Model Description

This version of the meta-model defines the essential information required to create the
software and system performance models as defined in <<Smith book>>. Additional
information may be required for analysis of advanced system model features such as
memory analysis, passive resource delays, petri net analysis, etc. The CDIF meta-model
draft standard provides features for extending meta-model definitions to incorporate
information supersets; the extensions are a topic for future work.

The meta-model ERA diagram is shown in Figure 1a. Figure 1b gives the attributes of
each entity. The following paragraphs describe the entities and their relationships. The
complete definition is in [Williams, 1994 #1245].

An SPE study is based on PerformanceScenarios. Each PerformanceScenario is modeled by
an ExecutionGraph. An ExecutionGraph is composed of one or more Nodes and zero or
more Arcs. A Node may be connected to one other Node via an Arc. Several types of
Nodes may be used in constructing an ExecutionGraph:

• ProcessingNode: represents processing steps at some appropriate level of
abstraction. There are three types of ProcessingNodes:

– BasicNode: represents a software processing step at the lowest level of
detail appropriate for the current development stage.

– ExpandedNode: indicates that processing details are expanded in a
subgraph at the next level of detail. The subgraph is, itself, another
ExecutionGraph.

– LinkNode: represents a functional component whose execution
requirements are specified in a previously saved performance scenario.

• StateIdentificationNode: indicates lock-free and acquire-release processing
events.

• CompoundNode: represents special processing structures, such as CASE
constructs, repetition, and parallel execution. There are four types of
CompoundNode:

– RepetitionNode: represents components which are repeated, each with a
repetition factor specifying the number of repetitions.

– CaseNode: represents conditional execution of components, each with a
probability of execution.

– PardoNode: represents parallel execution paths, each with a probability
of being initiated.

- 10 -

– SplitNode: indicates the initiation of concurrent processes that need not
join.

A CompoundNode is also composed of a combination of one or more ProcessingNodes and
one or more Arcs.

Arc
ArcID
FromNode
ToNode

BasicNode
CaseNode

NodeList
CompoundNode

CompoundNodeType
Device

DeviceName
DeviceType

Quantity
SchedulingPolicy
ServiceUnits
ServiceTime

ExecutionGraph
GraphName

Description
ModificationDateTime

ExpandedNode
NodeID

LinkNode
PerformanceScenarioID

Execution
Graph

Node Arc

Expanded
Node

Basic
Node

Repetition
Node

Case
Node

Pardo
Node

State
Identification

Node

Split
Node

Link
Node

1+

Parameter

Processing
Node

Compound
Node

1+

IsConnectedTo

Performance
Scenario

IsModeledBy

1+Resource
Requirement

Device

Overhead
Matrix

MayBeUsed
ToDescribe

SpecifiesResources
UsedBy

1+

IsExecuted
On

Figure 1a. SPE Meta-Model ERA Diagram

- 11 -

Node
NodeID
NodeName
NodeType

OverheadMartix
ResourceName
DeviceName
AmountOfService

Parameter
ParameterName
ParameterType
ParameterValue

PardoNode
NodeList

PerformanceScenario
ScenarioName

InterarrivalTime
NumberOfJobs
Priority

ProcessingNode
ProcessingNodeType

RepetitionNode
RepetitionFactor

ResourceRequirement

NodeID
ResourceName
ServiceUnits

SplitNode
StateIdentificationNode

Figure 1b. Entity Attributes (Inherited attributes are not shown)

The resources used by a Node are specified by one or more ResourceRequirements. A
ResourceRequirement may be described by an optional Parameter. A ResourceRequirement
is executed on one or more Devices. A Device represents a unit that provides some
processing service. ResourceRequirements are associated with Devices by an
OverheadMatrix which specifies the amount of service that each resource type requires
from various devices.

The current version of the meta-model does not include performance objectives.
Currently, performance objectives are defined informally, based on the type of problem
and expert judgement. Inclusion of performance objectives in the meta-model will
require that they be more formally defined. This is a topic for future research.

The model is formally defined using the EIA/CDIF format. Figure 2 illustrates an
entity definition, Figure 3 shows an attribute definition and Figure 4 illustrates a
relationship definition.

- 12 -

ResourceRequirement.IsExecutedOn.Device

NAME.......................................IsExecutedOn
CDIFMETA IDENTIFIERSPE060

META-ENTITY: Device

NAME.......................................Device
SUBTYPEOF.............................
CDIFMETA IDENTIFIERSPE005
DESCRIPTION...........................A Device represents a unit in the execution environment

that provides some processing service.
USAGE.....................................
ALIASES...................................
CONSTRAINTS..........................
TYPE..Kernel

INHERITED META-ATTRIBUTES ..

LOCAL META-ATTRIBUTES
DeviceName
DeviceType
Quantity
SchedulingPolicy
ServiceUnits
ServiceTime

INHERITED META-RELATIONSHIPS

LOCAL META-RELATIONSHIPS...
ResourceRequirement.IsExecutedOn.Device

Figure 2. Sample Entity Description

META-ATTRIBUTE NAME............SchedulingPolicy
CDIFMETA IDENTIFIERSPE046
DESCRIPTION...........................The policy used to select the next service request to be

served from a device queue.
USAGE.....................................
ALIASES...................................
CONSTRAINTS..........................
DATATYPEEnumerated
DOMAIN....................................FCFS | PS | IS
LENGTH
ISOPTIONALFalse

Figure 3. Sample Attribute Description

- 13 -

SUBTYPEOF.............................
SUPERTYPEOF.........................
MINSOURCECARD0
MAXSOURCECARDN
MINDESTCARD0
MAXDESTCARDN
DESCRIPTION...........................Relationship to connect a ResourceRequirement to its

implementation on a particular Device or set of Devices.
This relationship is described by the associative entity
OverheadMatrix.

USAGE.....................................
ALIASES...................................
CONSTRAINTS..........................

INHERITED META-ATTRIBUTES ..

LOCAL META-ATTRIBUTES

Figure 4. Sample Relationship Definition

The entity OverheadMatrix merits some additional explanation. It is based on a concept
in the SPE product, SPE•ED™ [Smith, 1994 #1214]. The OverheadMatrix is an associative
entity; it describes the relationship between a ResourceRequirement and a Device. An
individual instance of OverheadMatrix contains an identifier for a ResourceRequirement
(ResourceName) and a Device (DeviceName). For each ResourceRequirement/Device pair,
the OverheadMatrix specifies a particular AmountOfService. For example, the
ResourceRequirement may specify the number of instructions to be executed. The
OverheadMatrix would specify the CPU processing time per instruction which results in
the AmountOfService for the CPU Device. The identification of this entity as a matrix
becomes clear if the entity type is viewed as a table with each instance corresponding to
a row that specifies a distinct ResourceRequirement/Device pair such as:

• instructions and the CPU processing time per instruction,
• database updates and the CPU processing time per update and
• database updates and the Disk device visits per update.

The columns of the matrix contain the values of the attributes for each. Each node in
the PerformanceScenario then specifies the number of Instructions and Database updates,
and the overhead matrix relates the values to specific requirements for each Device. An
example of an overhead matrix is in Figure 5, and Figure 6 shows the formal definition
of the OverheadMatrix meta-entity.

- 14 -

Lock Replace Delete Print

Software spec template:

Facility template:

Software spec template:

Facility template:

Software spec template:

Facility template:

Overhead Demo

ATM Facility

Devices

Quantity

Service units

Ctl Flo

CPU

ATM

I/O
Evt Rec

Service time

CPU

1

Instr.

2

1

5

5
5

.00001

ATM

1

Screens

1

1

DEV1

1

Phys I/

1
1

0.050.05

Figure 5. Overhead Matrix Example

- 15 -

5 Summary and Conclusions

This paper has presented a meta-model of the information requirements for Software
Process Engineering. This meta-model defines the information required to perform
early-lifecycle SPE. This definition can be used by CASE tool manufacturers to add the
capability for capturing performance data to CASE tools that support software analysis
and design methods. The meta-model also provides a basis for developing an
interchange format to allow CASE tools to export performance information to
performance modeling tools.

Outstanding issues for future work include:

• Inclusion of performance objectives in the SPE meta-model: As noted in Section 4,
addition of performance objectives to the SPE meta-model requires their
formalization.

• Development of an SPE transfer format: The SPE meta-model described here
provides the basis for developing a transfer format for exchanging information
between CASE tools and performance tools.

• Reconciliation of models: As noted in [Smith, 1994 #1213], SPE uses different
levels of models. It is necessary to reconcile the high-level, early-lifecycle

META-ENTITY: OverheadMatrix

NAME.......................................OverheadMatrix
SUBTYPEOF.............................
CDIFMETA IDENTIFIERSPE010
DESCRIPTION...........................The OverheadMatrix specifies the amount of service that

each resource type requires from various devices.
USAGE.....................................
ALIASES...................................
CONSTRAINTS..........................
TYPE..Associative

INHERITED META-ATTRIBUTES ..

LOCAL META-ATTRIBUTES
ResourceName
DeviceName
AmountOfService

INHERITED META-RELATIONSHIPS

LOCAL META-RELATIONSHIPS...

Figure 6. Definition of OverheadMatrix

- 16 -

model described in the SPE meta-model presented here with the more detailed
model described in [Smith, 1994 #1213].

• Inclusion of time in software methods: Full integration of software methods and
SPE requires that software methods be capable of directly representing timing
and resource requirements. Approaches such as those proposed by Jahanian
and Mok [Jahanian, 1987 #739] or Jaffe and Leveson [Jaffe, 1991 #628] show
promise for bridging this gap.

• Addition of performance results to the SPE meta-model: The current SPE meta-
model includes the information required to construct a software model.
Adding performance results to the model would make it possible to transfer
the results back to a CASE tool to support decisions on design alternatives.

• Automated translation between CASE models and execution graphs: One of the
goals of this research is to provide support for evaluating the performance
characteristics of software designs at an early stage in the development process.
The SPE information model described defines the required information and a
transfer format based on this model will make it possible to exchange
information between CASE tools and performance tools.

The ability to easily compare design alternatives based on their performance
characteristics also requires the ability to translate CASE models into
performance models. We have identified scenarios [Booch, 1994 #1089], [Hsia,
1994 #1182], [Potts, 1994 #1183] as a common point of departure between
software methods and SPE. Scenarios are central to the construction of SPE
models. Scenarios are also becoming a central feature of contemporary
requirements analysis and software design methods. The use of interaction
diagrams [Booch, 1994 #1089] appears to be particularly promising [Williams,
1994 #1245].

6 References

[Baldassari, et al., 1989]
M. Baldassari, B. Bruno, V. Russi, and R. Zompi, “PROTOB: A Hierarchical Object-Oriented CASE Tool
for Distributed Systems,” Proceedings of the European Software Engineering Conference, 1989, Coventry,
England, 1989.

[Blaha, et al., 1988]
M. R. Blaha, W. J. Premerlani, and J. E. Rumbaugh, “Relational Database Design Using an Object-
Oriented Methodology,” Communications of the ACM, vol. 31, no. 4, pp. 414-427, 1988.

[Booch, 1994]
G. Booch, Object-Oriented Analysis and Design with Applications, Redwood City, CA,
Benjamin/Cummings, 1994.

[Buhr, et al., 1989]
R. J. A. Buhr, G. M. Karam, C. J. Hayes, and C. M. Woodside, “Software CAD: A Revolutionary
Approach,” IEEE Transactions on Software Engineering, vol. 15, no. 3, pp. 235-249, 1989.

[Chen, 1977]
P. Chen, “The Entity Relationship Approach to Logical Data Base Design,” Monograph No. 6, Q. E. D.
Information Sciences, Inc., 1977.

- 17 -

[Chen, 1976]
P. P. Chen, “The Entity Relationship Model: Toward a Unified View of Data,” ACM Transactions on
Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

[EIA, 1994]
EIA, “CDIF – CASE Data Interchange Format Overview,” EIA/IS-106, Electronics Industries Association,
January, 1994.

[Hsia, et al., 1994]
P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen, “Formal Approach to Scenario
Analysis,” IEEE Software, vol. 11, no. 2, pp. 33-41, 1994.

[Jaffe, et al., 1991]
M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart, “Software Requirements Analysis for
Real-Time Process Control Systems,” IEEE Transactions on Software Engineering , vol. 17, no. 3, pp. 241-
258, 1991.

[Jahanian and Mok, 1987]
F. Jahanian and A. K.-L. Mok, “A Graph-Theoretic Approach for Timing Analysis and its
Implementation,” IEEE Transactions on Computers, vol. C-36, no. 8, pp. 961-975, 1987.

[Lor and Berry, 1991]
K. Lor and D. M. Berry, “Automatic Synthesis of SARA Design Models from System Requirements,”
IEEE Transactions on Software Engineering, vol. 17, no. 12, pp. 1229-1240, 1991.

[Martin, 1988]
C. R. Martin, "An Integrated Software Performance Engineering Environment," Masters Thesis, Duke
University, 1988.

[Opdahl, 1992]
A. Opdahl, “A CASE Tool for Performance Engineering During Software Design,” Proceedings of the
Fifth Nordic Workshop on Programming Environmental Research, Tampere, Finland, 1992.

[Opdahl and Sølvberg, 1992]
A. Opdahl and A. Sølvberg, “Conceptual Integration of Information System and Performance Modeling,”
Proceedings of the Working Conference on Information System Concepts: Improving the Understanding,
1992.

[Potts, et al., 1994]
C. Potts, K. Takahashi, and A. I. Anton, “Inquiry-Based Requirements Analysis,” IEEE Software , vol. 11,
no. 2, pp. 21-32, 1994.

[Rolia, 1992]
J. A. Rolia, “Predicting the Performance of Software Systems,” Ph.D. Thesis, University
of Toronto, 1992.

[Rumbaugh, et al., 1991]
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design ,
Englewood Cliffs, NJ, Prentice Hall, 1991.

[Shen, et al., 1990]
V. Shen, C. Richter, M. Graf, and J. Brumfield, “VERDI: A Visual Environment for Designing Distributed
Systems,” Technical Report No. STP-054-90, Microelectronics and Computer Technology Corporation,
January, 1990.

[Shlaer and Mellor, 1988]
S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data, Englewood
Cliffs, NJ, Yourdon Press, 1988.

- 18 -

[Smith, 1994]
C. U. Smith, “Definition Of A Performance Model Interchange Format,” Performance Engineering
Services, October, 1994.

[Smith, 1990]
C. U. Smith, Performance Engineering of Software Systems, Reading, MA, Addison-Wesley, 1990.

[Smith and Williams, 1990]
C. U. Smith and L. G. Williams, “Why CASE Should Extend into Software Performance,” Software
Magazine, vol. 10, no. 9, pp. 49-65, 1990.

[Smith and Wong, 1994]
C. U. Smith and B. Wong, “SPE Evaluation of a Client/Server Application,” Proceedings of the Computer
Measurement Group, Orlando, FL, 1994.

[Teorey, et al., 1986]
T. J. Teorey, D. Yang, and J. P. Fry, “A Logical Design Methodology for Relational Databases Using the
Extended Entity-Relationship Model,” ACM Computing Surveys, vol. 18, no. 2, pp. 197-222, 1986.

[Valderruten, et al., 1992]
A. Valderruten, O. Hijiej, A. Benzekri, and D. Gazal, “Deriving Queueing Networks Performance Models
from Annotated LOTOS Specifications,” Proc. 6th Int. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation, R. Pooley and J. Hillston, ed., Edinburgh, 1992, pp. 167-178.

[Williams, 1994]
L. G. Williams, “Definition of Information Requirements for Software Performance Engineering,”
Technical Report No. SERM-021-94, Software Engineering Research, October, 1994.

[Woodside, 1989]
C. M. Woodside, “Throughput Calculation for Basic Stochastic Rendezvous Networks,” Performance
Evaluation, vol. 9, 1989.

[Woodside, et al., 1991]
C. M. Woodside, E. M. Hagos, E. Neron, and R. J. A. Buhr, “The CAEDE Performance Analysis Tool,”
Ada Letters, vol. XI, no. 3, 1991.

- 19 -

Appendix A: OMT Object Model Notation

The OMT Object Model Notation [Rumbaugh, 1991 #455] is used to document the
classes in an application and the relationships among them. This report uses a subset of
this notation to graphically document the SPE meta-model. The subset used here was
chosen for conformance with the EIA/CDIF proposed standard for CASE data
interchange [EIA, 1994 #1212]. The graphical symbols used to construct the SPE meta-
model are shown in Figure A.1.

Aggregate
Class

Part Class 1 Part Class 2

ClassName

Subclass 1 Subclass 2

Superclass Class 1 Class 2

Association
Class

Class:

Generalization (Inheritance): Associative Class:

Aggregation:

Cardinality:

1+

Class

Class

Class

Class

Class
1..2, 4

Exactly one

Many (zero or more)

Optional (zero or one)

One or more

Explicitly quantified

Relationship:

Class 1 Class 2Relationship
Name

Figure A.1: OMT Object Model Notation Symbols

A class is denoted by a rectangle labeled with the class name. The attributes of the class
may optionally be included in the rectangle. A class models a meta-entity in the CDIF
format. For classes with more than a few attribtes, however, this makes the diagram
difficult to read. Here, attributes are included only in the textual description of the
meta-model.

A relationship between two classes is indicated by a line connecting the two classes.†

The line is labeled with the name of the relationship. Cardinality constraints on

† The OMT notation allows ternary relationships. However, to conform with the EIA/CDIF draft

standard, we have restricted relationships to be binary only.

- 20 -

relationships are indicated by decorations on the line next to the class whose
participation they constrain. The various decorations are shown in Figure A.1.

Inheritance is modeled by a generalization relationship. With inheritance, properties
common to a group of classes are assigned to a superclass. Each subclass inherits all of
the attributes and relationships of its superclass(es). A generalization relationship is
indicated by a triangle whose apex points at the superclass.

Associative classes model relationships as classes. This allows adding information and
behavior to the relationship. Each instance of the relationship becomes an instance of
the associative class. Associative classes correspond to associative meta-entities in the
CDIF format. While the proposed CDIF standard included associative meta-entities, the
CDIF graphical notation does not include special syntax to indicate these entities. An
associative class is indicated by a loop conncecting the associative class to the
relationship that it represents.

Aggregation models a whole/part or “is composed of” relationship in which an
instance of one class is composed of instances of one or more other component, or part,
classes. The proposed CIDF standard does not include a special representation for
aggregation. However, aggregation is a commonly used relationship and it is useful to
be able to indicate it directly on the graphical model. In the OMT notation, aggregation
is indicated by a diamond attached to the aggregate class.

