
Performance Model Interchange Format:
Semantic Validation

Daniel Garcı́a, Catalina M. Lladó
Dep. de Cien. Mat. i Inf.

Universitat de les Illes Balears
07071, Palma de Mallorca, Spain.

danielgcou@gmail.com, cllado@uib.es

Connie U. Smith
Performance Engineering Services

PO Box 2640 Santa Fe
New Mexico, 87504-2640 USA

www.perfeng.com

Ramon Puigjaner
Dep. de Cien. Mat. i Inf.

Universitat de les Illes Balears
07071, Palma de Mallorca, Spain.

putxi@uib.es.

Abstract— A Performance Model Interchange Format (PMIF)
provides a mechanism whereby system model information
may be transferred among queueing network model (QNM)
based modeling tools. The PMIF allows diverse tools to
exchange information and requires only that those tools provide
importing/exporting mechanisms from/to the PMIF. The XML
specification of the PMIF allows implementers to use widely
available tools to parse the XML file, check the syntax, and
simplify the translation to/from the XML format. Those tools,
however, do not know the semantics of a QNM so they cannot
check the XML to ensure that it contains a valid QNM. This
paper presents the study of the validations needed to carry out
such a semantic analysis, and the development of a semantic
validation tool that can be used by any developer who wants to
implement PMIF import/export mechanisms.

Keywords. Interchange Format, Performance Models, Queueing
Network Models, SPE, Semantic validation, Tool interoperability,
XML.

I. INTRODUCTION

A Performance Model Interchange Format (PMIF) is a
common representation for system performance model data
that can be used to move models among modeling tools.
The PMIF allows diverse tools to exchange information and
requires only that the importing and exporting tools either
support the PMIF or provide an interface that reads/writes
model specifications from/to a file.

Previous work defined a PMIF meta-model for system per-
formance models that use a queueing network model (QNM)
paradigm and an XML (Extensible Markup Language) [1]
schema for the meta-model. A proof of concept was provided
with a prototype implementation in which the QNM export
was implemented in the SPE·ED [2] tool and the importing
tool was Qnap [3]. A set of examples was provided for
validation, see [4].

The XML specification of the PMIF allows implementers
to use widely available tools to parse the XML file, check the
syntax, simplify the translation to/from the XML format, and
other common tasks. Those tools, however, do not know the
semantics of a QNM so they cannot check the XML to ensure
that it contains a valid QNM.

For example, standard XML tools can check to confirm that
arcs in the QNM model are connected to elements that have
been specified in the model, but they cannot determine that

those elements are actually Nodes (they could be Workloads).
Moreover, they cannot determine other conditions that a QNM
must have such as the existence of a valid path from a source
node to a sink node.

It is best to implement the semantic analysis of a PMIF
model in one tool so that importing tools do not have to
duplicate the error checking. This makes it easier to implement
a PMIF import function. It is also helpful for testing a PMIF
export function to confirm that it generates proper models.
Moreover, the semantic analysis can be offered as a Web
service so that it can be developed, installed, and maintained
once for all users who wish to use this capability.

Related work is covered in the next section. Then the
remainder of the paper is organized as follows: in order to
make the paper self-contained the PMIF XML schema is
described in Section III. The types of semantic validation
are described in Section IV. Section V describes the design
and implementation of a tool for performing these semantic
validations. Section VI presents a case study and Section VII
offers some conclusions.

II. RELATED WORK

Related work specifically on semantic validation of QNM
has not been reported. Before PMIF, modelling tools either
implemented error checking internally, or in some cases, just
prevented the error with their input language or Graphical User
Interface (GUI). For example, a GUI could prevent a user
from drawing a QNM model that does not have a path from
the source node to the sink node. Some command line tools
that use input/output files, as for example Qnap, produce error
messages when the models are not semantically correct, for
example if a class arrives to a node which does not have a
corresponding service specified for this class.

There has been some work on semantic validation of
XML in general. The three primary approaches for specifying
and checking semantic properties are: domain-specific custom
programs, XSLT stylesheets and constraint specification lan-
guages.

This paper reports the semantic conditions that must hold for
a PMIF to be valid. It also defines the order for checking the
conditions. Both of these contributions are needed regardless
of the implementation technology used. We have chosen to use



custom programming code to implement the proof of concept
because:

• it is easier for us to check conditions that must hold in
the model topology (such as open workloads must have
a valid path from a source node to a sink node) with
programming logic

• it is easier for us to debug the code than the complex
constraints that would be required

• there currently is no ”standard” constraint language
• we do not have a commercial XML product for process-

ing constraints
• we have defined some conditions to generate warnings

rather than errors so we would need a constraint-checking
tool that allows that possibility.

It is possible to use a constraint-based tool or an XSLT
stylesheet for checking the ”easy” conditions. However, it does
not seem worthwhile in this case because we construct internal
data structures for the complex tests anyway, so we might as
well use them to test the ”easy” conditions. This avoids the
complexity of using multiple tools with tests divided between
them.

III. PMIF OVERVIEW

PMIF was first defined using an EIA/CDIF (Elec-
tronic Industries Association/CASE Data Interchange Format)
paradigm that calls for defining the information requirements
for a QNM with a meta-model [5], that is, a model of the
information that goes into constructing a QNM. A transfer
format was then created from the meta-model and used to
exchange information. The PMIF allows diverse tools to
exchange information and requires only that the importing and
exporting tools either support the PMIF or provide an interface
that reads/writes model specifications from/to a file.

A new version of the PMIF meta-model and its XML
schema specification (PMIF 2.0) was presented in [4], [6]. In
order to comprehend this paper, it is necessary to understand
how the different elements of a QNM and their relationships
are specified in the PMIF. Therefore, the PMIF meta-model is
shown in Fig. 1.

The diagram shows that a QueueingNetworkModel is com-
posed of one or more Nodes, and one or more Workloads.
A Server provides service for one or more Workloads. A
Workload represents a collection of transactions or jobs that
make similar ServiceRequests from Servers. There are two
types of Workloads: OpenWorkload and ClosedWorkload.

A ServiceRequest specifies the average TimeService, De-
mandService or WorkUnitService for each Workload that visits
the Server. A TimeServiceRequest specifies the average service
time and number of visits. A DemandServiceRequest specifies
the average service demand (service time x number of visits).
A WorkUnitServiceRequest specifies the average number of
visits requested by each Workload that visits a WorkUnit-
Server. Upon completion of the ServiceRequest, the Workload
Transits to other Nodes with a specified probability.

Fig. 1. XML schema for PMIF 2.0

TABLE I
PMIF ELEMENTS AND ITS ATTRIBUTES

Element Sub-element Attributes

Node

SourceNode Name
SinkNode Name
Server Name, Quantity, SchedulingPolicy

WorkUnitServer Name, Quantity, SchedulingPolicy
TimeUnits, ServiceTime

Arc None FromNode, ToNode, Description

Workload

OpenWorkload
WorkloadName, ArrivalRate
TimeUnits, ArrivesAt
DepartsAt

ClosedWorkload
WorkloadName, TimeUnits
NumberOfJobs, ThinkTime
ThinkDevice

SR

DemandSR WorkloadName, ServerID, TimeUnits
ServiceDemand, NumberOfVisits

TimeSR WorkloadName, ServerID, TimeUnits
ServiceTime, NumberOfVisits

WorkUnitSR WorkloadName, ServerID
NumberOfVisits

Transit To, Probability

The attributes of the PMIF elements are shown in Table I1.
More detailed information and the PMIF schema speci-

fication can be found in [4], [6]. The schema itself is at
www.perfeng.com/pmif/pmifschema.xsd.

IV. PMIF SEMANTIC VALIDATION

The PMIF XML schema enables PMIF users to syntactically
validate their models. However, the models might be seman-
tically incorrect. In this section the semantic validations we
consider necessary are described. The validations are grouped
into three categories as follows:

1) Error generation: some conditions cause the PMIF
model to be incoherent. In fact, most queueing network
modelling tools (for example QNAP [7]) would generate
an error if these conditions are found. Therefore, this
group of semantic validations generates an error because
the model cannot be solved as specified.

2) Warnings: other situations may occur in which, even
though the model is, in general, still correct it might
not actually produce the intended model, or it might be

1the Transit sub-element shown is a sub-element of all Workload sub-
elements and all ServiceRequest sub-elements. SR stands for ServiceRequest



specified in a way that can cause confusion. Two levels
of warnings have been defined. Some validations will
produce a significant warning while others will generate
a non-significant one, depending on the importance of
the problem.

3) Excluded: other validations are described, which were
also considered but have not been included in the
development of the tool. The reason for their exclusion
is also explained.

A. Coherent Identifiers

In XML schemas the ID attribute is used to specify a
unique identifer, and the attribute IDREF is a reference to
an ID. In the PMIF schema, two groups of entities have an
ID attribute, Nodes and Workloads and the IDREF’s are used
to relate those to other entities. The XML schema (syntactic)
validation checks that attributes of type IDREF have a value
that has been specified as an ID. However, such an ID might
be incorrectly used in the sense that every IDREF attribute
of elements (or sub-elements) has some semantic restrictions
on which elements or sub-elements may be referenced. For
example, the sub-element OpenWorkload has an attribute of
type IDREF which is ArrivesAt. This IDREF needs to be a
reference to an element of type Node (it cannot be of type
Workload) and moreover it needs to be of type SourceNode
(sub-element of Node).

The valid groups and subgroups of identifiers for the at-
tributes of the different elements and sub-elements can be
found in [8]. This paper omits these details due to lack of
space. The reference shows, for example, that the attribute
To of a Transit element must reference a Node. Additionally,
the Transit element is a sub-element of type Workload and of
ServiceRequest, and for both of them it is always related to
a specific Workload. Depending on whether this workload is
open or closed the To attribute of the Transit element can
only reference some sub-elements of Node. The allowable
references are also shown in [8].

All the validations described in this section belong to the
first group, so when problems are found, an error will be
generated.

B. Elements Specified but not Referenced

Elements of type Node and Workload do not play a roll
in a model unless they are referenced in another element.
More specifically, Workload, Server (unless it is a ThinkDe-
vice) and WorkUnitServer elements need to be referenced
in some ServiceRequest element. SourceNode and SinkNode
elements need to be referenced in an OpenWorkload element
as ArrivesAt and DepartsAt attributes respectively. Otherwise
a significant warning will be generated because the model may
not be the one intended.

C. Duplicates

The ID attribute of Node and Workload elements makes sure
that those are unique. However, ServiceRequest and Transit
elements might be specified more than once and the PMIF

XML file would still be valid against the PMIF schema.
Therefore the semantic validation needs to do the following:
• For each couple Node and Workload only one Ser-

viceRequest can be specified.
• For each Workload element only one Transit element can

be specified with the same value for the attribute To (i.e.,
transiting to the same node).

• For each ServiceRequest element only one Transit ele-
ment can be specified with the same value for the attribute
To (i.e., transiting to the same node).

An error is generated if these conditions do not hold because
the intended behavior is ambiguous.

D. Multiple Servers

The Quantity attribute specifies the number of parallel
servers that a Node of type Server or WorkUnitServer has.
The PMIF schema specification allows this value to be zero.
Hence, the semantic validation needs to verify that a node with
Quantity equals zero is not associated to any Workload in a
ServiceRequest. Otherwise, an error will be generated.

On the other hand, if the attribute Quantity of an element of
type Node is equal to zero but this element is not associated to
any Workload in a ServiceRequest a significant warning will
be produced because the model can be solved but may not be
the intended model.

E. Think Device

When a Node is referenced as ThinkDevice in a Closed-
Workload element, this server cannot be referenced by any
other ServiceRequest element. Moreover, such a Node needs to
have a SchedulingPolicy that is IS (Infinite Server). A violation
of these conditions results in an error.

F. Coherent Workload Chains

As described in Section III a Workload can be a Closed-
Workload or an OpenWorkload. The XML schema validation
makes sure that the attributes specified for each Workload
sub-element are the appropriate ones for that sub-element.
However, the workloads specified as closed might not really
form a closed chain and the ones specified as open workloads
might not be really open.

Firstly, each element containing elements of type Transit
(i.e. ServiceRequest or Workload elements), needs to have
the sum of the probabilities of its Transits greater than zero,
otherwise, an error will be generated. We are not assuming
that each of the probabilities needs to be different from zero
due to the following: A queueing network modelling tool
that internally represents the routing probabilities as a matrix
would, in general, have many of the positions of the matrix
with value 0. If such a tool automatically generates a PMIF
XML file, it would probably generate many Transit elements
with probability zero. Therefore, this case would only give a
significant warning.

Secondly, if a workload chain arrives to a specific Node,
this Node needs to be referenced by a ServiceRequest that
relates it to the specific Workload. Otherwise an error will be



generated. On the other hand, the reverse case, i.e. if there
exists a ServiceRequest that relates a Workload and a Server
but the Workload chain never gets to that Server, a significant
warning is produced.

The second part of this validation is different for open
and closed workloads, but both result in an error when the
following conditions do not hold. For the OpenWorkload case:
• There exists a path from the SourceNode specified by

the attribute ArrivesAt to the SinkNode specified by the
attribute DepartsAt, which includes at least one interme-
diate node of type Server or WorkUnitserver.

• A SinkNode can only be used in a workload chain
if it is referenced by the attribute DepartsAt of the
OpenWorkload specification.

Finally, the validation for ClosedWorkloads implies the
following:
• There exists a loop going from the ThinkDevice node and

back to it which includes at least one intermediate node
of type Server or WorkUnitserver.

G. Time Units

TimeUnits is an optional attribute that appears in many
elements. Since it is optional, a model will be syntactically
valid when this attribute appears in some elements but not in
all of the elements. If none of the elements have TimeUnits
specified it implies that they all have the same time unit
whatever that is (some modelling tools, for example Qnap,
use this paradigm). On the other hand, when this attribute is
specified for some elements and not specified for others, a non-
significant warning is given with a message that the default
value for time units is seconds. Moreover, we also consider it
useful to give a non significant warning if different values for
the attribute TimeUnits are used throughout the model because
it might not be correct.

H. Attribute Values Equals Zero

The PMIF schema is defined allowing many attributes to
have a value of zero which can be useful for some specific
cases, such as temporarily ”disabling” a server to investigate
the impact. However, in general, models will not have a zero
value for the following attributes: ServiceTime for WorkU-
nitServer, ArrivalRate for OpenWorkload, NumberofJobs for
ClosedWorkload, NumberofVisits for ServiceRequest, Ser-
viceTime for TimeServiceRequest, ServiceDemand for De-
mandServiceRequest. A significant warning will be given if
any of these attributes have a zero value since the model might
not be the one intended.

I. Routing Probability Equations (and Number of Visits)

In the PMIF XML schema routing probabilities are required
and number of visits are optional since the number of visits can
always be calculated from the routing probabilities as shown
in [4]. Many tools use visits, others use probabilities, so both
are included to make the PMIF easier to import. Therefore
when the number of visits are also specified in a model, their
values need to be consistent with the routing probability values

using the well-known routing probability equations (see for
example [9]). An error is produced otherwise (referenced as b
in Fig.2).

Additionally, since the number of visits is an optional
attribute, it can happen that for the same Workload, in some
ServiceRequest this attribute is filled and in some others
it is not. A significant warning will be given in that case
(referenced as a in Fig.2).

J. First Come First Served Servers

In a model with multiple workloads, First Come First Served
(FCFS) servers need to have the same service time for all the
workloads in order for that model to be solved analytically.
However, such a model could be simulated. Therefore this
validation will produce a significant warning.

K. Excluded Validations

Routing probabilities for each Node and Workload should
add to one. However, that does not need to be validated since
many tools (for example Qnap and SPE·ED ) normalize the
probabilities and therefore the values given by the user do not
need to follow that rule.

When the scheduling policy of a server is of type infinite
server the quantity value is not normally used since, in general,
it is not meaningful. A warning could have been produced
in this case but some tools (as for example SPE·ED ) use
the quantity value for special calculations. Another possible
validation would be to check whether a model is trap free,
that is, it does not contain a sub-chain that allows a client to
get in and never get out again. We thought this would be a
duty for the queueing network modelling tool to do.

V. VALIDATION DESIGN AND IMPLEMENTATION

This section describes how the validations explained in the
previous section will be performed. Due to their inter-related
nature the validations cannot be carried out in a random order
since the checking of most conditions only makes sense if
other conditions have already been validated. Therefore, our
validation process will have different phases that need to hap-
pen sequentially. Fig. 2 shows these phases and the validations
performed in each of them (each validation is represented
by the number of the subsection where that validation is
described). Since one of the advantages of having the PMIF
meta-model specified as an XML schema is that the PMIF
files can easily be syntactically validated against that schema,
the semantic validation starting point is an XML file that is
syntactically valid. The validation dependencies are shown in
Fig. 2, so that if there is an arrow that goes from validation a
to validation b it means that validation b only makes sense if
validation a has already been confirmed. Moreover, we have
grouped the validations in three sets depending on whether
they generate errors, significant warnings or non significant
warnings (see Section IV). These groups are also distinguished
in Fig. 2.

It is not possible to conduct all validations in one pass of
the PMIF XML file. Therefore, intermediate data structures are



Fig. 2. Validation phases and dependencies (the number inside each circle
corresponds to the subsection where the validation is described)

used to facilitate the PMIF validation. The PMIF document is
parsed once and these structures are built. Similarly, the errors
and warnings are stored in a second data structure so that they
can be collected and inserted in the output at the appropriate
location.

Thus, the functions that our PMIF validation application
performs are:

1) PMIF file analysis and construction of model data struc-
tures.

2) Validation using data structure analysis and construction
of error data structure.

3) Output generation with errors and warnings found.
We would like to execute the validation application in three

different ways, single invocation from a command line, using a
graphical user interface, and through a web service. This way
the validation application is independent from the interface and
the different interfaces are developed separately. The graphical
user interface is shown in Fig 3.

The PMIF semantic validation tool has been implemented in
Java since it is a platform independent language and it provides
Application Programming Interfaces (APIs) that facilitate the
manipulation of XML documents. We have used the Java API
for XML Processing (JAXP) [10] and as part of it the Simple
API for XML (SAX). The Xerxes library [11] is also used
with SAX to perform the syntactic validation of the XML
document against the PMIF schema.

The implemented classes have been grouped into 2 packages
as follows:

Fig. 3. Graphical user interface

• Information, which contains the classes used to build the
memory data structures.

• Modules, containing the classes that carry out the tasks
related to the semantic validation itself.

The details for all the classes can be
found in the API documentation available at
http://dmi.uib.es/˜cllado/pmif/validation.

VI. CASE STUDY

This section describes the validation of a case study step by
step. The example used is based on the ATM model from [5].
The PMIF XML file corresponding to this model can be found
at http://dmi.uib.es/˜cllado/pmif/ATM.xml.
This file has been modified so that even though it is
syntactically valid, it has many semantic errors, or
inconsistences. In fact, most of the semantic validations
described in Section IV fail in one way or another when this
example is checked. The modified ATM PMIF specification
is shown in [8], where the non-valid elements (or the ones
that will produce warnings) are commented with the name of
the subsection in which the related validation is described.

As described in Section V, the PMIF XML file is parsed
once and intermediate data structures are built.

Using these structures, the validations are carried out fol-
lowing the phases described in Fig. 2 in such a way that
a phase only starts if the validation of the previous one
has finished without errors (though it could have generated
warnings), see Section V.

Given this example, the first phase does not validate, so the
rest of them cannot be carried out. The output obtained is 1
error which is written in the output file as: Line 23. ERROR-
02f: In the OpenWorkload test (23), the attribute ArrivestAt
must be a SourceNode. When this error is corrected and the
validation is executed again, the second phase can start and
the output obtained is 2 errors and 3 warnings (phase 2 has
given errors and so phase 3 does not start). The output file
contains the following errors/warnings:

• Line 7. ERROR-06b: The Server CPU (7) has 0 servers
(attribute quantity 0) but it is associated with a De-



mandServiceRequest or a TimeServiceRequest or is a
ThinkDevice of ClosedWorkload.

• Line 12. WARNING-08c: The Server CPUNEW (12) is
not referenced by any TimeServiceRequest or Demand-
ServiceRequest or ThinkDevice of a ClosedWorkload.
WARNING-06a: The Server CPUNEW (12) has 0 servers
(attribute quantity 0) but it is not used.

• Line 23. WARNING-08e: The OpenWorkload test (23) is
not referenced by any ServiceRequest (23).

• Line 45. ERROR-04a: This combination (CPU, With-
drawal) is a repetition of a previous ServiceRequest (38).

The errors are corrected (not the warnings since they do not
cause the interruption of the validation process) and the new
errors/warnings found corresponding to phase 3 only, are:
• Line 2. WARNING-09e: Different units in the TimeUnits

are used. The used units are: Sec: WorkUnitServer (9)
/ OpenWorkload (22) / OpenWorkload (27) / OpenWork-
load (31) / DemandServiceRequest (37) Ms: WorkUnit-
Server (8)

• Line 22. WARNING-11b: The OpenWorkload test (22) has
a value 0.0 in its ArrivalRate attribute.
ERROR-13c: A ServiceRequest does not exist for CPU
and test.
ERROR-13e: A transition does not exist to the SinkNode
for the OpenWorkload test.

• Line 31. ERROR-13c: A ServiceRequest does not exist for
CPU and Get-balance.
ERROR-13e: A transition does not exist to the SinkNode
for the OpenWorkload Get-balance.
WARNING-13f: The WorkUnitServer ATM with Ser-
viceRequest associated with OpenWorkload Get-balance,
is unreachable by this Workload.
WARNING-13f: The WorkUnitServer DISKS with Ser-
viceRequest associated with OpenWorkload Get-balance,
is unreachable by this Workload.

Again, we correct the errors found so far and the validation
results in 1 error corresponding to phase 4 execution only:
Line 47. ERROR-14a: NumberOfVisits values are inconsistent
with Probability values in the OpenWorkload Withdrawal
(27) for this WorkUnitServiceRequest (47). The value for this
NumberOfVisits must be 8 according to Transit elements.

When this last error is corrected, in the subsequent execution
of the validation, phase 5 is also carried out and the ATM
PMIF file is semantically valid since there are no other errors.

VII. CONCLUSION

The Performance Model Interchange Format (PMIF) allows
diverse tools to exchange QNM performance models and
requires only that the importing and exporting tools either
support the PMIF or provide an interface that reads/writes
model specifications from/to a file. The XML specification of
the PMIF allows implementers to use widely available tools to
parse the XML file, check the syntax, simplify the translation
to/from the XML format, and other common tasks. Those
tools, however, do not know the semantics of a QNM so they
cannot check the XML to ensure that it contains a valid QNM.

This work describes a companion tool that checks the PMIF
XML to ensure that it contains a semantically correct QNM.
This tool makes it possible for modelling tools that import the
PMIF to omit these error checking features. The tool is also
helpful for testing a PMIF export function to confirm that it
generates proper models. It is possible to use these features via
a Web service, then it is not necessary to install or maintain
the tool. PMIF validation updates can thus be handled once
and reused by other tools.

This approach is a general one that applies to PMIF models
produced by many different types of tools, such as software
modelling tools, analytic tools and simulation tools. Some
validation cannot be done because things invalid in one tool
may be fine in a different tool. For example, Qnap requires a
separate source node for each open workload, but other tools
may only need one source node. Therefore, tools may need
to supplement this validation with some additional model-
checking steps. A constraint language or XSLT may be a good
way for tools to supplement our tests with their own custom
checks

The number and type of validations are easily extensible so
a tool provider could use what we have developed and upgrade
as needed. Similarly, the classification of errors and warnings
is also easily adapted. The tool can be downloaded from
http://dmi.uib.es/˜cllado/pmif/validation/.

Our future work includes extending the PMIF to add ele-
ments and attributes typically found in QNM that may not be
solved analytically, but may be simulated. It will be easy to
add the semantic validation for these extensions.

In addition, we are considering documenting the seman-
tic conditions in the PMIF meta-model to better define the
requirements for a PMIF XML file to be valid for both
implementers and users of the PMIF.

REFERENCES

[1] W3C, “World Wide Web Consortium,” http://www.w3c.org/XML, 2003.
[2] “SPEED, Software Performance Modeling Tool,” www.perfeng.com,

2006.
[3] D. Potier and M. Veran, “Qnap2: A portable environment for queueing

systems modelling,” in I International Conference on Modeling Tech-
niques and Tools for Performance Analysis, D. Potier, Ed. North
Holland, May 1985, pp. 25–63.

[4] C. Smith and C. Llado, “Performance model interchange format (PMIF
2.0): XML definition and implementation,” in Proc. of the First Interna-
tional Conference on the Quantitative Evaluation of Systems, September
2004, pp. 38–47.

[5] C. Smith and L. Williams, “A performance model inter-change format,”
Journal of Systems and Software, vol. 49, no. 1, 1999.

[6] C. Smith and C. Llado, “Performance model interchange format
(PMIF 2.0): XML definition and implementation. tecnical report,”
www.perfeng.com/paperndx.htm, LS Computer Technology, Inc., Tech.
Rep., April 2004.

[7] Simulog, “Modline 2.0 qnap2 9.3: Reference manual,” 1996.
[8] D. Garcia, C. Llado, C. Smith, and R. Puigjaner, “Performance model

interchange format: Semantic validation,” www.uib.es/ cllado/publica-
tions, Universitat de les Illes Balears, Tech. Rep., April 2006.

[9] G. Bolch and et al., Queueing Networks and Markov Chains. Model-
ing and Performance Evaluation with Computer Science Applications.
Wiley Interscience, 1998.

[10] “Java API for XML processing (JAXP),”
http://java.sun.com/webservices/jaxp/index.jsp, 2006.

[11] Apache, “Xerxes2 Java parser 2.7.1,” http://xerces.apache.org/ xerces2-
j/, 2005.


