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Abstract

Many object-oriented systems fail to meet performance objectives when they are
initially constructed. These performance failures result in damaged customer
relations, lost productivity for users, lost revenue, cost overruns due to tuning or
redesign, and missed market windows. Most performance failures are due to a lack of
consideration of performance issues early in the development process. However,
early consideration of performance in object-oriented systems is straightforward. The
Use Case scenarios produced by developers during analysis and design serve as a
starting point for performance analysis.  This paper describes a systematic approach to
the performance engineering of object-oriented systems based on Use Case scenarios.
This approach is cost-effective and has a low impact on the software development
process. A simple case study illustrates the process.
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1  Introduction

Object-oriented techniques have become widely accepted for designing and
implementing software systems in application areas ranging from client-server to
real-time, embedded systems. Object-oriented software systems are typically easier to
understand, easier to adapt to new requirements, and have a higher potential for reuse
than those developed with procedural approaches.

Unfortunately, many object-oriented systems fail to meet performance objectives
when they are initially constructed. These performance failures result in damaged
customer relations, lost productivity for users, lost revenue, cost overruns due to
tuning or redesign, and missed market windows. Moreover, “tuning” code to
improve performance is likely to disrupt the original design, negating the benefits
obtained from using the object-oriented approach. Finally, it is unlikely that “tuned”
code will ever equal the performance of code that has been engineered for
performance. In the worst case, it will be impossible to meet performance goals by
tuning, necessitating a complete redesign or even cancellation of the project.

Our experience is that most performance failures are due to a lack of consideration of
performance issues early in the development process, in the architectural design
phase. Poor performance is more often the result of problems in the design rather
than the implementation. However, the trend in the object-oriented community is to
defer consideration of performance until after the system has been implemented. The
following quote from Auer and Beck (Auer and Beck, 1996) is typical:

Performance myth: “Ignore efficiency through most of the development cycle. Tune
performance once the program is running correctly and the design reflects your best
understanding of how the code should be structured. The needed changes will be
limited in scope or will illuminate opportunities for better design.”

This “fix-it-later” attitude is not unique to the object-oriented community. It is rooted
in the view that performance is difficult to predict and that the models needed to
predict the performance of an emerging system are complex and expensive to
construct. Predicting the performance of object-oriented systems can, in fact, be very
difficult. The functionality of object-oriented systems is decentralized. Performing a
given function is likely to require collaboration among many different objects from
several classes. These interactions can be numerous and complex and are often
obscured by polymorphism, making them difficult to trace. The current trend toward
distributing objects over a network compounds the problem.

Despite these difficulties, our experience is that it is possible to cost-effectively engineer
object-oriented systems that meet performance goals. By carefully applying the
techniques of software performance engineering (SPE) throughout the development
process, it is possible to produce object-oriented systems that have adequate
performance and exhibit the other qualities, such as reusability, maintainability, and
modifiability that have made object-oriented development (OOD) so effective (Smith
and Williams, 1993).
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In this paper we focus on Use Cases since they provide the basis for a bridge between
object-oriented methods and SPE (Smith and Williams, 1997).  An instance of a Use
Case represents a particular execution of the system.  Use Case instances are described
using Scenarios.  Scenarios from Use Cases are translated into SPE performance
scenarios.  Performance scenarios are, in turn, used to construct and evaluate a variety
of performance models.

SPE is a method for constructing software systems to meet performance objectives
(Smith, 1990). Performance refers to the response time or throughput as seen by the
users. The SPE process begins early in the software life cycle and uses quantitative
methods to identify a satisfactory architecture and to eliminate those that are likely to
have unacceptable performance. SPE continues throughout the development process
to:  predict and manage the performance of the evolving software, monitor actual
performance against specifications, and report problems as they are identified. SPE
begins with deliberately simple models that are matched to the current level of
knowledge about the emerging software. These models become progressively more
detailed and sophisticated as more details about the software are known. SPE methods
also cover performance data collection, quantitative analysis techniques, prediction
strategies, management of uncertainties, data presentation and tracking, model
verification and validation, critical success factors, and performance design principles.

This paper describes the application of SPE to object-oriented systems. We begin with
a review of related work. Overviews of OOD and SPE follow. We then present an
overview of the SPE process for object-oriented systems. A simple example illustrates
the process.

2  Related Work

As noted in the introduction, object-oriented methods typically defer consideration of
performance issues until detailed design or implementation (see e.g., (Rumbaugh, et
al., 1991), (Jacobson, et al., 1992), (Booch, 1994)). Even then, the approach tends to be
very general and ad hoc. There is no attempt to integrate performance engineering
into the development process.

Some work specifically targeted at object-oriented systems has emerged from the
performance community. Smith and Williams (Smith and Williams, 1993) describe
performance engineering of an object-oriented design for a real-time system.
However, this approach applies general SPE techniques and only addresses the
specific problems of object-oriented systems in an ad hoc way.

Hrischuk et. al. (Hrischuk, et al., 1995) describe an approach based on constructing an
early prototype which is then executed to produce angio traces. These angio traces are
then used to construct workthreads (also known as timethreads or use case maps (Buhr and
Casselman, 1992), (Buhr and Casselman, 1994), (Buhr and Casselman, 1996)), which
show object method invocations. Service times for methods are estimated. This differs
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from the approach described here in that their approach derives scenarios from
prototype execution and generates the system execution model from the angio traces.
Our approach is intended for use long before executable prototypes are available; and
it reflects a view of the software that explicitly models more general scenarios with
execution path frequencies and repetitions.

Baldassari et. al. describe an integrated object-oriented CASE tool for software design
that includes a simulation capability for performance assessment (Baldassari, et al.,
1989), (Baldassari and Bruno, 1988). The CASE tool uses petri nets for the design
description language rather than the general methods described above, thus the
design specification and the performance model are equivalent and no translation is
necessary. Using these capabilities requires developers to use both the PROTOB
method and CASE tool. The approach described here is general in that it may be used
with a variety of object-oriented analysis and design methods.

3  Object-Oriented Development

Object-oriented development is an approach to software specification, design and
construction that is based on identification of the objects that occur naturally in the
application and implementation domains. The specification, design and code are then
organized to reflect the structure inherent in those objects and their interactions.

A number of approaches to object-oriented analysis and/or design have appeared
over the past several years (see e.g., (Shlaer and Mellor, 1988), (Shlaer and Mellor,
1992), (Booch, 1991), (Rumbaugh, et al., 1991), (Jacobson, et al., 1992), (Selic, et al.,
1994), (Rational Software Corporation, 1997)). Despite their apparent differences, these
approaches share several significant commonalties. They all involve construction of a
set of conceptual models of the system under development. These conceptual models
are based on object-oriented concepts such as classes, objects, methods (operations),
and inheritance. Each of them also employs, at one time or another, different views of
the classes and objects that are being modeled.

The principal views are embodied in static and dynamic models. Static models (Class
and Object Diagrams) describe the classes and objects that are relevant to the problem
and the relationships among them. Dynamic models (State Diagrams) describe the
patterns of behavior that apply to objects belonging to a given class. A number of
methods have also adopted Use Case Diagrams to describe interactions between the
system and its environment or between objects within the system.

In this paper, we focus on Use Cases since these provide the basis for a bridge between
object-oriented methods and SPE (Williams and Smith, 1995). A Use Case is a specific
way of using the system (Jacobson, et al., 1992), (Rational Software Corporation, 1997).
Each Use Case consists of a set of sequences of actions that the system performs to
achieve some desired result. An instance of a Use Case represents a particular
execution of the system.
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Use Case instances are described using Scenarios. A Scenario is a sequence of actions
describing the interactions between the system and its environment (including the
user) or between the internal objects involved in a particular execution of the system.
The scenario shows the objects that participate and the messages that flow between
them. A message may represent either an event or an invocation of one of the object’s
methods (operations). In object-oriented methods, scenarios are used to:

• describe the externally visible behavior of the system,
• involve users in the requirements analysis process,
• support prototyping,
• help validate the requirements specification,
• understand interactions between objects, and
• support requirements-based testing.

As described in (Williams and Smith, 1995), scenarios provide a common point of
departure between object-oriented requirements or design models and SPE models.
Scenarios may be represented in a variety of ways (Williams, 1994). Here we use
Message Sequence Charts (MSCs) to describe scenarios in object-oriented models. The
MSC notation is specified in ITU standard Z.120 (ITU, 1996). Several other notations
used to represent scenarios are based on MSCs (examples include:  (Rumbaugh, et al.,
1991), (Jacobson, et al., 1992), (Booch, 1994), and (Rational Software Corporation,
1997)). However, none of these incorporates all of the features of MSCs needed to
establish the correspondence between scenarios in object-oriented modeling and
scenarios in SPE.

Figure 1 illustrates a high-level MSC for a simple automated teller machine (ATM).
Each object that participates in the scenario is represented by a vertical line or axis.
The axis is labeled with the object name (e.g., anATM). The vertical axis represents
relative time which increases from top to bottom; the MSC notation does not include a
representation of absolute time. Interactions between objects (events or method
invocations) are represented by horizontal arrows.
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aUser anATM homeBank

cardInserted

requestPIN

pINEntered(aPIN)

requestTransaction

response

msc userInteraction

loop

alt

processDeposit

processWithdrawal

processBalanceInquiry

terminateSession

Figure 1. Message Sequence Chart for a user interaction with the ATM

aUser anATM homeBank

requestAccount

account

requestAmount

amount

requestAuthorization

msc processWithdrawal

authorization

dispense(amount)

requestTakeCash

cashTaken

transactionComplete

ack

Figure 2. Message Sequence Chart processWithdrawal

 Figure 1 describes a general scenario for user interaction with the ATM. The
rectangular areas labeled “loop” and “alt” are known as “inline expressions” and
denote repetition and alternation. This Message Sequence Chart indicates that the user
may repeatedly select a transaction which may be a deposit, a withdrawal, or a



- 6 -

balance inquiry. The rounded rectangles are “MSC references” which refer to other
MSCs. The use of MSC references allows horizontal expansion of Message Sequence
Charts. The MSC that corresponds to ProcessWithdrawal is shown in Figure 2.
 
A Message Sequence Chart may also be decomposed vertically, i.e., a refining MSC
may be attached to an instance axis. Figure 3 shows a part of the decomposition of the
anATM instance axis. The dashed arrows represent object instance creation or
destruction. Arrows originating or terminating at the edge of the chart are those from
the higher-level MSC.

anATM aCustomerSession aWithdrawal

new

requestPIN

msc anATM

requestTransaction

requestTransaction

response

new

cardInserted

requestPIN

aPIN

aPIN

response

requestAccount

requestAccount

... ... ...

Figure 3. MSC anATM

MSC references and decomposition help to control complexity by hiding details until
they are needed. They also make it easier to assemble scenario fragments into full
scenarios. Finally, decomposition allows a developer to elaborate a scenario by
including additional objects (as in Figure 3) as the design becomes more detailed.

Scenarios from Use Cases provide the basis for constructing performance scenarios.
Performance scenarios are, in turn, used to construct performance models. Section 4
describes these performance models and their use in managing performance
throughout the development process.

4  Software Performance Engineering

Software performance engineering is a quantitative approach to constructing software
systems that meet performance objectives. SPE prescribes principles for creating
responsive software, the data required for evaluation, procedures for obtaining
performance specifications, and guidelines for the types of evaluation to be conducted
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at each development stage. It incorporates models for representing and predicting
performance as well as a set of analysis methods.

SPE uses deliberately simple models of software processing with the goal of using the
simplest possible model that identifies problems with the system architecture, design,
or implementation plans. These models are easily constructed and solved to provide
feedback on whether the proposed software is likely to meet performance goals. As
the software process proceeds, the models are refined to more closely represent the
performance of the emerging software.

The precision of the model results depends on the quality of the estimates of resource
requirements. Because these are difficult to estimate early in the software process, SPE
uses adaptive strategies, such as upper- and lower-bounds estimates and best- and
worst-case analysis to manage uncertainty. For example, when there is high
uncertainty about resource requirements, analysts use estimates of the upper and
lower bounds of these quantities. Using these estimates, analysts produce predictions
of the best-case and worst-case performance. If the predicted best-case performance is
unsatisfactory, they seek feasible alternatives. If the worst case prediction is
satisfactory, they proceed to the next step of the development process. If the results are
somewhere in-between, analyses identify critical components whose resource
estimates have the greatest effect and focus on obtaining more precise data for them.
A variety of techniques can provide more precision, including:  further refining the
design and constructing more detailed models or constructing performance
benchmarks and measuring resource requirements for key components.

Two types of models provide information for design assessment:  the software
execution model and the system execution model. The software execution model represents
key aspects of the software execution behavior. It is constructed using execution
graphs (Smith, 1990) to represent workload scenarios. Nodes represent functional
components of the software; arcs represent control flow. The graphs are hierarchical
with the lowest level containing complete information on estimated resource
requirements. Figure 4 shows the execution graph corresponding to the user
interaction scenario from Figures 1 - 3. The graph shows that, following
GetCustomerInfo and GetPIN, the ATM will repeat the ProcessTransaction node n times.
ProcessTransaction and TerminateSession are expanded nodes; they are expanded in a
separate graph. Figure 5 shows the expansion of ProcessTransaction.
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A comparison of Figures 1 through 3 with Figures 4 and 5 illustrates the strong
correspondence between Use Case scenarios, as represented in MSCs, and
performance scenarios, as represented in execution graphs.

Solving the software model provides a static analysis of the mean, best- and worst-
case response times. It characterizes the resource requirements of the proposed
software alone, in the absence of other workloads, multiple users or delays due to
contention for resources. If the predicted performance in the absence of these
additional performance-determining factors is unsatisfactory, then there is no need in
constructing more sophisticated models.

If the software execution model indicates that there are no problems, analysts proceed
to construct and solve the system execution model. This model is a dynamic model
that characterizes the software performance in the presence of factors, such as other
workloads or multiple users, that could cause contention for resources. The results
obtained by solving the software execution model provide input parameters for the
system execution model. Solving the system execution model provides the following
additional information:

• more precise metrics that account for resource contention
• sensitivity of performance metrics to variations in workload composition
• effect of new software on service level objectives of other systems
• identification of bottleneck resources
• comparative data on options for improving performance via: workload

changes, software changes, hardware upgrades, and various combinations of
each

The system execution model represents the key computer resources as a network of
queues. Queues represent components of the environment that provide some
processing service, such as processors or network elements. Environment

Get
PIN

n

Process
Transaction

Terminate
Session

Get Customer
Info

Figure 4. Execution Graph for user
interaction with the ATM

Process
Transaction

Get
Transaction

Process
Withdrawal

Process
Deposit

Process
Balance

=

Process
Request

Figure 5. Expansion of processTransaction
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specifications provide device parameters (such as CPU size and processing speed).
Workload parameters and service requests for the proposed software come from the
resource requirements computed by solving the software execution model. The results
of solving the system execution model identify potential bottleneck devices and
correlate system execution model results with software components.

If the model results indicate that the performance is likely to be satisfactory,
developers proceed. If not, the model results provide a quantitative basis for
reviewing the proposed design and evaluating alternatives. Feasible alternatives can
be evaluated based on their cost-effectiveness. If no feasible, cost-effective alternative
exists, performance goals may need to be revised to reflect this reality.

This discussion has outlined the SPE process for one design-evaluation cycle. These
steps repeat throughout the development process. At each phase, the models are
refined based on the more detailed design and analysis objectives are revised to
reflect the concerns that exist for that phase (Smith, 1990).

5  SPE for OOD

Software performance engineering for object-oriented systems includes the following
steps:

1. Establish performance objectives:  Performance objectives specify the
quantitative criteria for evaluating the performance characteristics of the
system under development. These objectives may be expressed in several
different ways, including:  response time, throughput, or constraints on
resource usage. For information systems, response time is typically
described from a user perspective, i.e., the number of seconds required to
respond to a user request. For real-time systems, response time is given as
the amount of time required to respond to a given external event.
Throughput requirements are specified as the number of transactions or
events to be processed per unit time.

2. Identify important Use Cases:  The important Use Cases are those that are
critical to the operation of the system or which are important to
responsiveness as seen by the user. Typically, this is only a subset of the Use
Cases that are identified during object-oriented analysis.

3. Select key performance scenarios: It is unlikely that all of the scenarios for each
critical Use Case will be important from a performance perspective. For
each important Use Case, the key scenarios are those which are executed
frequently or those which are critical to the perceived performance of the
system.

4. Translate scenarios to execution graphs:  Once the key performance scenarios
have been identified, the MSC representation is translated to an execution
graph. Currently, this is a manual process. However, the close
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correspondence between scenarios as expressed in MSCs and execution
graphs suggests that an automated translation may be possible.

 Estimates of the amount of processing required for each step in the
execution graph are obtained form the class definition for each object
involved. This information is contained in the class diagram, or the logical
view of the system architecture (Kruchten, 1995). As described above, early
in the development process, these may be simply best/worst case estimates.
Later, as each class is elaborated, the estimates become more precise.

5. Add resource requirements:  The processing steps in an execution graph are
typically described in terms of the software resources (e.g., operating
systems calls or database accesses) used. Resource requirements map these
software resource requirements onto the amount of service they require
from key devices in the hardware configuration.

 Resource requirements depend on the environment in which the software
executes. Information about the environment is obtained from the physical
view of the architecture (Kruchten, 1995). In the UML, this corresponds to
the Deployment Diagram.

6. Solve the models:  As noted above, solving the execution graph characterizes
the resource requirements of the proposed software alone. If this solution
indicates problems, analysts consider design alternatives to address the
problems. If not, then analysts proceed to solve the system execution model.

These steps are illustrated with the following case study.

6  Case Study

This case study examines an interactive system, known as ICAD, to support computer-
aided design (CAD) activities. Engineers will use the application to construct and view
drawings that model structures, such as aircraft wings. The system also allows users to
store a model in a database and interactively assess the design’s correctness,
feasibility, and suitability. The model is stored in a central, relational database and
several versions of the model may exist within the database.

A drawing consists of nodes and elements. Elements may be:  beams, which connect
two nodes; triangles, which connect three nodes; or plates, which connect four or more
nodes. Additional data is associated with each type of element to allow solution of the
engineers’ model. A node is defined by its position in three-dimensional space (x, y,
z), as well as additional information necessary for solution of the model.

Several different Use Cases have been identified for ICAD, including Draw (draw a
model) and Solve (solve a model). For this example we focus on the Draw Use Case
and one particular scenario, DrawMod (Figure 6). In the DrawMod scenario, a typical
model is drawn on the user’s screen. A typical model contains only nodes and beams
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(no triangles or plates) and consists of 2050 beams. The performance goal is to draw a
typical model in 10 seconds or less.

iCAD aModel theDatabase

msc DrawMod

new

open

find(modelID)

retrieve(modelId)

draw

close

Figure 6. The DrawMod Scenario

The following sections consider three alternative designs for this application and their
performance.

6.1  Design 1
The first design uses objects to represent each beam and node. This design offers a
great deal of flexibility, makes it possible to treat all types of elements in a uniform
way, and allows the addition of new types of elements without the need to change any
other aspect of the application. The Class Diagram for Design 1 is illustrated in Figure
7.

Model

TriangleNode Beam Plate

Element

modelID : int
beams[] : beam

node1 : int
node2 : int
node3 : int
…

nodeNo : int
x : int
y : int
z : int
…

node1 : int
node2 : int
…

nodes[] : node
…

elementNo : int

draw()

draw()
draw()

draw()
draw()

1..N

2

3

4..N

Figure 7. Class Diagram for Design 1
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Given the design in Figure 7, the DrawMod scenario expands to that in Figure 8. The
unlabeled dashed arrows indicate a return from a nested set of messages.  This
notation is not part of the MSC standard, it is taken from the UML (Rational Software
Corporation, 1997).

iCAD aModel

msc DrawMod

loop

new

open

find(modelID)

sort(beams)

retrieve(beam)

find(modelID, node1, node2)

retrieve(node1)

retrieve(node2)

new

new

new

draw

close

node2theDatabase aBeam node1

draw

draw

drawBeam

draw

Figure 8. DrawMod scenario for Design 1

This paper illustrates model solutions using the SPE•ED™ performance engineering tool
(Smith and Williams, 1997). A variety of other performance modeling tools are
available, such as (Beilner, et al., 1988), (Beilner, et al., 1995), (Goettge, 1990),
(Grummitt, 1991), (Rolia, 1992), (Turner, et al., 1992). However, the approach described
here will need to be adapted for tools that do not use execution graphs as their
modeling paradigm.

Figure 9 shows SPE•EDs screen with the execution graph corresponding to the scenario
in Figure 8. The expanded nodes in the tool’s graphs are shown with color. The “world
view” of the software model appears in the small navigation boxes on the right side
of the screen. The top level of the model is in the top-left navigation box; its nodes are
black. The top-right navigation (turquoise) contains the Initialize processing step (the
steps preceding find(modelID)  in the MSC). Its corresponding expanded node in the top-
level model is also turquoise.  The expansion of the yellow DrawBeams processing step
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contains all the steps within the loop in the MSC. Again, there is a close
correspondence between the object interactions in the MSC scenario in Figure 8 and
the execution graph in Figure 9.

After creating the processing steps in the execution graph, analysts then specify
resource requirements for each step. Then, SPE•ED produces solutions for both the
software execution model and the system execution model. The specification of
resource requirements as well as the model solutions are described in (Smith and
Williams, 1997). The parameters in this case study are based on the example in (Smith,
1990); the specific values used are omitted here.

Figure 10 shows a combination of four sets of results for the “No Contention”
Solution - the elapsed time for one user to complete the Drawmod scenario with no
contention delays in the computer system. This best-case solution indicates whether it
is feasible to achieve performance objectives with this approach. The solution in the
top-left portion of the Figure shows that the best-case elapsed time is 992.33 seconds.
The time for each processing step is next to the step. The color bar legend in the upper-
right corner of the quadrant shows the values associated with each color.  Values
higher than the 10 second performance objective will be red, lower values are
respectively cooler colors. The “Resource usage” values below the color bar legend
show the time spent at each computer device. Of the approximately 992 seconds, 990 is
due to time required for I/O at the “DEVs” disk device. The DrawBeam processing step
requires 991 seconds for all 2050 iterations. The time per iteration, 0.483 seconds, is in
the top-right quadrant along with the time for each processing step in the loop. The
bottom two quadrants show the break-down of the computer device resource usage
for the top level model and the DrawBeam submodel. Most of the I/O time (988
seconds) is in the DrawBeam step, the bottom-right quadrant shows that the I/O is fairly
evenly spread in the submodel: 0.12 secs. for both RetrieveBeam and FindNodes, 0.24 secs.
for SetUpNode.

The results show that Design 1 clearly will not meet the performance goal of 10
seconds, so we explore other possible designs.
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SPE•ED
TM

Display: Specify:

©1993 Performance EngineeringServices

Solve OK

Software mod Names

Results Values

Overhead Overhead

System model Service level

SPE database Sysmod globals

Save Scenario Open scenario

Add

Link Expand

Insert node

    Software model

Drawmod

Drawmod

Initialize

Find Beams

Sort 
beams

beams

Draw 
beams

FinishFinish

Figure 9. Execution Graph for DrawMod scenario for Design 1
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Lock Replace Delete Print

< 2.70
< 5.14
< 7.57
< 10.00
≥ 10.00

Resource Usage

0.198  CPU
990.078  DEVs
2.052  Display

Time, no contention: 992.329

0.272

0.214

1.270

990.512

0.060

Drawmod

Initializ
e

Find 
Beams

Sort 
beams

beams

Draw 
beam

FinishFinish

Lock Replace Delete Print

< 2.59
< 5.06
< 7.53
< 10.00
≥ 10.00

Time, no contention: 0.483

0.121

0.000

0.120

0.241

0.001

Draw beam

Retriev
e beam

New 
beam

Find 
nodes

Each node

Set up 
node

DrawDraw

Lock Replace Delete Print

< 2.50
< 5.00
< 7.50
< 10.00
≥ 10.00

Resource demand: 

Model totals

0.198  CPU
990.078  DEVs
2.052  Display

Drawmod

Initializ
e

Find 
Beams

Sort 
beams

beams

Draw 
beam

FinishFinish

CP 0.000
DE 0.270
Dis 0.002

CP 0.002
DE 0.212
Dis 0.000

CP 0.002
DE 1.268
Dis 0.000

CP 0.194
DE 988.2
Dis 2.050

CP 0.000
DE 0.060
Dis 0.0000.000

Lock Replace Delete Print

< 2.50
< 5.00
< 7.50
< 10.00
≥ 10.00

Resource demand: 

Submodel totals

0.000  CPU
0.482  DEVs
0.001  Display

Draw beam

Retriev
e beam

New 
beam

Find 
nodes

Each node

Set up 
node

DrawDraw

CP 0.000
DE 0.121
Dis 0.000

CP 0.000
DE 0.000
Dis 0.000

CP 0.000
DE 0.120
Dis 0.000

CP 0.000
DE 0.241
Dis 0.000

CP 0.000
DE 0.000
Dis 0.0010.001

Figure 10.  Performance Results for Design 1.
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6.2  Design 2
Design 1 uses an object for each beam and node in the model. While this gives the
design a great deal of flexibility, using an object for each node and beam is potentially
expensive in terms of both run-time overhead and memory utilization.

We can reduce this overhead by using the Flyweight pattern (Gamma, et al., 1995).
Using the Flyweight pattern in ICAD allows sharing of beam and node objects and
reduces the number of each that must be created in order to display the model. Each
model now has exactly one beam and node object. The node and beam objects contains
intrinsic state, information that is independent of a particular beam or node (such as
coordinates). They also know how to draw themselves. Extrinsic state, coordinates and
other information needed to store the model are stored separately. This information is
passed to the beam and node flyweights when it is needed.

The Flyweight pattern is applicable when (Gamma, et al., 1995):
• the number of objects used by the application is large,
• the cost of using objects is high,
• most object state can be made extrinsic,
• many objects can be replaced by fewer, shared objects once the extrinsic

state is removed, and
• the application does not depend on object identity.

The SPE evaluation will determine if the ICAD application meets all of these criteria.

Instead of using an object for each Beam and Node, we use a shared object based on
the Flyweight pattern. The state information is removed from the Beam and Node
classes and is stored directly in Model. The Class Diagram for this design is shown in
Figure 11.

Model

TriangleNode Beam Plate

Element

modelID : int
beams[] : Points

node1 : int
node2 : int
node3 : int
…

nodeNo : int
x : int
y : int
z : int
…

node1 : int
node2 : int
…

nodes[] : node
…

elementNo : int

draw()

draw()
draw()

draw()
draw()

1..3

Figure 11. Class diagram for Design 2
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The scenario resulting from this set of classes is shown in Figure 11. As shown in
Figure 11, constructors for Node and Beam are executed only once, resulting in a
savings of X constructor invocations.

iCAD aModel theDatabase

msc DrawMod

loop

aBeam aNode

new

open

find(modelID)

sort(beams)

retrieve(beam)

find(modelID, node1, node2)

retrieve(node1)

retrieve(node2)

new

draw(point1)

draw(point2)

close

draw(point1, point2)

new

draw

Figure 11. DrawMod scenario for Design 2

The changes to the execution graph for this design are trivial. The graph nodes
corresponding to the “New” processing steps move from the yellow subgraph that
represents the DrawBeam processing step to the turquoise  subgraph corresponding to
the Initialize  processing step. This takes the corresponding resource requirements out
of the loop that is executed 2050 times.

The overall response time is reduced from 992.33 to 992.27 seconds. The results of the
software execution model for this design indicate that using the Flyweight pattern did
not solve the performance problems with ICAD.  Constructor overhead is not a
significant factor in the DrawMod scenario. The amount of constructor overhead used
in this case study was derived from a specific performance benchmark and will not
generalize to other situations.  It is compiler, operating system, and machine
dependent; in our case constructors required no I/O.  It is also design-dependent; in
our example there is no deep inheritance hierarchy.  It is also workload-dependent; in
this case the number of beams and nodes in the typical problem is relatively small.
Nevertheless, we choose to retain the Flyweight-based design; it will help with much
larger ICAD models where the overhead of using an object for each beam and node
may become significant, making the design more scalable.
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The evaluation of Design 2 illustrates two important points:  modifying performance
models to evaluate design alternatives is relatively easy; and it is important to
quantify the effect of design alternatives rather than blindly follow design
“guidelines” that may not apply.  Note that the relative value of improvements
depends on the order that they are evaluated.  If the database I/O and other problems
are corrected first, the relative benefit of flyweight will be larger.

The problem in the original design, excessive time for I/O to the database, is not
corrected with the Flyweight pattern, so the next design focuses on reducing the I/O
time due to database access.
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Figure 12. Results for DrawMod scenario for Design 2
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6.3  Design 3
This design uses the same architecture as Design 2 (Figure 10) but modifies the
database management system with a new operation to retrieve a block of data with
one call:  retrieveBlock(). Design 3 uses this new operation to retrieve the beams and
nodes once at the beginning of the scenario and stores the data values for all beams
and nodes with the model object rather than retrieve the value from the database each
time it is needed. This new operation makes it possible to retrieve blocks containing
20K of data at a time instead of retrieving individual nodes and beams1. A single
block retrieve can fetch 64 beams or 170 nodes at a time. Thus, only 33 database
accesses are required to obtain all of the beams and 9 accesses are needed to retrieve
the nodes.

The class diagram for Design 3 does not change from Design 2. Figure 13 shows the
MSC that corresponds to the new database access protocol. The bold arrows indicate
messages that carry large amounts of data in at least one direction. Although this
notation is not part of the MSC standard, we have found it useful to have a way of
indicating resource usage on scenarios that are intended for performance evaluation.
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Figure 13. DrawMod scenario for Design 3

                                                
1 Note:  A block size of 20K is used here for illustration. The effect of using different block sizes could

be evaluated via modeling to determine the optimum size.
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Figure 14 shows the execution graph corresponding to Figure 13 along with the
results for the “No Contention” solution. The time for Design 3 is approximately 8
seconds – a substantial reduction.

Other improvements to this design are feasible, however, this serves to illustrate the
process of creating software execution models from object-oriented designs and
evaluating trade-offs. It shows that it is relatively easy to create the initial models, and
the revisions to evaluate design alternatives are straightforward. Analysts will
typically evaluate other aspects of both the software and system execution models to
study configuration sizing issues and contention delays due to multiple users of a
scenario and other workloads that may compete for computer system resources. In
these additional performance studies, the most difficult aspect has been getting
reasonable estimates of processing requirements for new software before it is created.
The process described here alleviates this problem. Once this data is in the software
performance model, the additional studies are straightforward and are not described
here. Information about these additional performance models are in (Smith and
Williams, 1997).
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Figure 14. Execution Graph for DrawMod scenario for Design 3.
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7  Summary and Conclusions

This paper has described a systematic approach to the performance engineering of
object-oriented software that is critical to preventing performance failures.
Performance failures may result in damaged customer relations, lost productivity for
users, lost revenue, cost overruns due to tuning or redesign, missed market windows,
and, in the worst case, the need to completely re-design the product or even cancel the
project.

Object-oriented systems offer unique challenges for performance engineering due to
the complexity of interactions between objects and the trend toward distribution of
objects over a network.  However, our experience has shown that it is possible to cost-
effectively engineer object-oriented systems that meet performance goals.  This paper
has described the process of software performance engineering for object-oriented
systems and illustrated that process with a simple case study.

The key to this process is the employment of Use Case scenarios as a link between
object-oriented analysis and design models and performance models.  Use case
scenarios can be translated to execution graphs which serve as a starting point for
performance modeling.  This connection is a key step in enabling the performance
evaluation of new object-oriented software systems.  We illustrated the connection
with a simple best-case software execution model.  The software execution model is
sufficient for many architecture and design evaluations.  Even when more complex
performance analysis is required, this first-step evaluation is essential to narrow the
problem space and focus on the problems requiring analysis.  Thus, the modeling
approach uses deliberately simple models that are matched to the current level of
knowledge about the emerging software.  These models become progressively more
detailed and sophisticated as more details about the software are known. Adaptive
strategies are used to manage uncertainty. Thus, the modeling effort matches the level
of knowledge about the emerging system and is less intrusive upon the development
process.

The Use Case scenarios are vital to this SPE approach;  they are also an important step
in the design process. Scenarios have been shown to be useful to designers for
reasoning about the problem and its solution.  Other advantages of Use Cases are
described in Section 3. Using scenarios as a starting point for the SPE analysis means
that designers do not have to produce additional artifacts and performance analysts
have a familiar description of workloads.  This approach also facilitates
communication between designers and performance analysts, lowering one of the
barriers to using SPE.

The case study in this paper omits an important step in the SPE process:  specification
of software resource requirements.  While it is a vital step in the process, the process
of identifying specifications necessary, gathering data in performance walkthroughs,
and specifying the performance data in the SPE tool is documented elsewhere (Smith,
1990), (Smith and Williams, 1997).  We are currently exploring an approach for
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integrating the specification of performance requirements into Message Sequence
Charts.

The case study illustrates the value of systematically connecting the software
architecture and design models to SPE performance models.  It provides quantitative
data for alternatives to ensure that performance goals can be achieved with the
selected design thus precluding tuning that may disrupt the design.  It permits project
managers to invest in alternatives that have a beneficial effect.  Our technique for
connecting design and SPE performance models preserves the benefits of both
systematic design methods and systematic application of SPE methods.  This
preservation results from our particular combination of design and performance
experience.  Preserving the benefits of design and performance engineering is
essential to effectively meet performance objectives of new systems with a design that
is scalable, robust, maintainable, reusable and has other quality attributes.

This work is part of a larger project to make it easier for developers to perform initial
performance assessments. One of the principal barriers to the widespread acceptance
of SPE is the gap between the software developers who need performance assessments
and the performance specialists who have the skill to conduct comprehensive
performance engineering studies with today’s modeling tools. Thus, extra time and
effort are required to coordinate the design formulation and the design analysis. This
limits the ability of developers to explore design alternatives. The matching of Use
Case scenarios and performance scenarios, together with the use of a tool, such as
SPE•ED, that automates key aspects of the SPE process represent a significant step
toward achieving this goal.

As noted in Section 4, the translation of MSCs to execution graphs is currently a
manual process. However, the close correspondence between scenarios as expressed in
MSCs and execution graphs suggests that an automated translation may be possible. A
future project will explore this possibility.  A previous project developed an SPE meta-
model that defines the information requirements for SPE (Williams and Smith, 1995).
The SPE meta-model can be used by CASE tool vendors to add the capability to collect
performance data as part of the design information. By collecting performance data
within the design tool and automatically translating MSCs to execution graphs, it will
be possible to export data from the CASE tool to any SPE tool that supports the meta-
model.  Thus CASE tools need not replicate the performance expertise already
available.  This offers a more cost-effective approach to supporting SPE.  Our other
future work will address models of distributed object-oriented systems, the
specification of performance requirements, and additional tool features to automate
SPE evaluations.
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