
Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

From UML models to software performance results:
An SPE process based on XML interchange formats

Connie U. Smith

Performance Engineering Services

PO Box 2640

Santa Fe, New Mexico

87504-2640, USA
www.perfeng.com

Catalina M. Lladó
Universitat Illes Balears

Departament de Matemàtiques I Informàtica

Cra. de Valldemossa, Km 7.6

07071 Palma de Mallorca, Spain
cllado@uib.es

Vittorio Cortellessa, Antinisca Di Marco
Dipartimento di Informatica

Università dell’Aquila

Via Vetoio, Coppito

L’Aquila, 67010, Italy
cortelle@di.univaq.it

adimarco@di.univaq.it

Lloyd G. Williams
Software Engineering Research

2345 Dogwood Circle

Louisville, CO 80027
lloydw@perfx.net

ABSTRACT
The SPE process uses multiple performance assessment tools
depending on the state of the software and the amount of
performance data available. This paper describes two XML
based interchange formats that facilitate using a variety of
performance tools in a plug-and-play manner thus enabling the
use of the tool best suited to the analysis. The Software
Performance Model Interchange Format (S-PMIF) is a common
representation that is used to exchange information between
(UML-based) software design tools and software performance
engineering tools. On the other hand, the performance model
interchange format (PMIF 2.0) is a common representation for
system performance model data that can be used to move
models among system performance modeling tools that use a
queueing network model paradigm. This paper first defines an
XML based S-PMIF based on an updated SPE meta-model Then
it demonstrates the feasibility of using both the S-PMIF and the
PMIF 2.0 to automatically translate an architecture description
in UML into both a software performance model and a system
performance model to study the performance characteristics of

the architecture. This required the implementation of some
extensions to the XPRIT software in order to export UML
models into the S-PMIF and a new function in the SPE·ED
software to import S-PMIF models, which are also described.
The SPE process and an experimental proof of concept are
presented.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids; D.2
[Software]: Software Engineering; C.4 [Performance of
Systems]: Modeling Techniques.

Keywords
Software Performance Engineering, tool interoperability, XML,
performance model, UML, interchange format, automated
model building, SPE process, methods and tools

1. INTRODUCTION
The SPE process uses multiple performance assessment tools
depending on the state of the software and the amount of
performance data available. This paper describes two XML
based interchange formats that facilitate using a variety of
performance tools in a plug-and-play manner, thus enabling the
use of the tool best suited to the analysis. A Software
Performance Model Interchange Format (S-PMIF) is a common
representation that can be used to exchange information
between (UML-based) software design tools and software
performance engineering tools. Using it, a software tool can
capture software architecture and design information along with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’05 July 12-14, 2005, Palma de Mallorca, Spain
Copyright 2005 1-59593-087-6/05/0007

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

some performance information and export it to a software
performance engineering tool for model elaboration and solution
without the need for laborious manual translation from one
tool’s representation to another, and the need to validate the
resulting specification.

S-PMIF enables the following Software Performance
Engineering (SPE) tasks:

1. Developers can prepare designs as they usually do and
export the data to SPE tools where performance
models can be constructed automatically.

2. The model transformation can be used to check that
the resulting processing details are those intended by
the UML specification.

3. Data available to developers can be captured in the
development tool – other data can be added by
performance specialists in the SPE tool.

4. Rapid production of models makes data available for
supporting design decisions in a timely fashion. This
is good for studying architecture and design tradeoffs
before committing to code.

5. Developers can do some of this on their own without
needing detailed knowledge of performance models.

The performance model interchange format (PMIF 2.0) is a
common representation for system performance model data that
can be used to move models among system performance
modeling tools that use a queueing network model paradigm
[20]. A user of several tools that support these formats can
create a model in one tool and easily move models to other tools
for further work.

This paper first defines an XML based S-PMIF based on the
meta-model of software performance model information
requirements in [22]. Then it demonstrates the feasibility of
using both the S-PMIF and the PMIF 2.0 to automatically
translate an architecture description in UML into both a
software performance model and a system performance model
to study the performance characteristics of the architecture. The
software performance model provides best and worst case
performance data for an architecture/design. If the predicted
performance results do not meet performance requirements, the
model identifies critical areas and makes it easy for an analyst to
study alternatives for correcting problems and quantify the
performance improvement of each. Once an appropriate
architecture/design is selected, the PMIF can be used to transfer
the model to a system execution model to study additional facets
of the operating environment and look for problems due to
contention, locking, etc., and to study the effect of changes in
the computer or network environment.

This overall process is beneficial because no single tool is good
for everything. Early in development one needs to quickly and
easily create a simple model to determine whether a particular
architecture will meet performance requirements. Precise data is

not available at that time, so simple models are appropriate for
identifying problem areas. Later in development, when some
performance measurements are available, more detailed models
such as Queueing Network Models (QNM), Stochastic Petri
Nets (SPN), or Process Algebra (PA) models can be used to
study intricacies of the performance of the system. At that time,
different tools are desirable that provide features not in the
simpler models. These “industrial strength” modeling tools are
seldom appropriate earlier in development because the models
take additional time and expertise to construct and evaluate, and
it is seldom justified when performance details are sketchy at
best.

A common set of XML based interchange formats lets one use a
variety of different tools as long as they support the interchange.
Each tool must either provide an explicit import and export
command, or provide an interface to/from a file and an XSLT
translation can convert between the interchange format and the
file. The translation can be relatively easy.

Earlier work defined both a meta-model for software
performance models and a PMIF using an EIA/CDIF (Electronic
Industries Association/CASE Data Interchange Format)
paradigm for transferring information between CASE tools [18,
22]. The PMIF was subsequently enhanced and implemented in
XML [20]. An exchange takes place via a file and internal tool
information is translated to and from the file’s transfer format.
The transfer format in the original CDIF standard used LISP as
the implementation language. Today, XML is a more logical
choice for a transfer format because it was designed for this
purpose and there are many tools available to support the
exchange of information in XML.

This project uses the SPE meta-model as a starting point, and
contributes the following to the interchange process:

• An updated SPE meta-model

• Definition of the XML schema based on the meta-model

• Implementation of extensions to the XPRIT software to
export UML models into the S-PMIF

• Implementation of extensions to the SPE·ED software to
import S-PMIF models

• Demonstrated feasibility with an experimental proof of
concept that uses both interchange formats to combine the use
of software performance engineering models and system
performance models to predict performance from a UML
specification.

After discussing related work, this paper describes the SPE
meta-model and the XML schema based on it. Then it presents
the SPE process for model exchanges and the required
extensions to XPRIT and SPE·ED. The SPE process and the
experimental proof of concept are presented. Plans for future
work and conclusions complete the presentation.

2. RELATED WORK
In recent years, a significant amount of effort has been put into
the inclusion of performance analysis and evaluation in the early

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

stages of a software development process. A considerable part
of it is summarized in [1].

Many of these works transfer design specifications into a
particular solver that can be based on Queueing Networks, Petri
Nets or Process Algebra formalisms and that can be solved
either analytically or by simulation tools. Some examples on
these lines are: Gu and Petriu use XSLT (eXtensible Stylesheet
Language for Transformations) to transform UML models in
XML format to the corresponding Layered Queueing Network
(LQN) description which can be read directly by existing LQN
solvers [5]. Marzolla and Balsamo propose a “UML
Performance Simulator” which transforms a UML software
specification given by a set of annotated diagrams (Use Case,
Activity and Deployment), with a discrete-event simulation
model [8]. Savino et al. annotate UML diagrams and transform
them into the Qnap modeling language [13]. Lopez-Grao et al.
propose a method to translate several UML diagram types to
analyzable GSPN models where performance requirements are
annotated according to the UML Profile for Schedulability,
Performance and Time [7]. Petriu and Woodside translate
specifications from Use Case Maps into LQN models [11].

Differently, our work follows the software performance
engineering approach where from an annotated UML software
specification, a software performance model is first derived and
evaluated using a software modeling tool, like SPE·ED [16, 17],
SP [6], or HIT [2], which outputs are normally enough in early
stages of design. When more specific performance measures are
needed, the model can be exported as a Queuing Network model
and analyzed with a system modeling tool, like Qnap.
Furthermore, our approach proposes and uses common XML
based interchange formats, S-PMIF and PMIF 2.0, which allow
multiple tools to be used to solve the models. Tools may be used
in a “plug and play” fashion to select the tool best suited for a
particular problem. It simplifies the implementation of an
interchange process because tools only need to interface with
the interchange format and need not develop custom interfaces
to each other. The process that we envision is illustrated in
Figure 1.

3. SPE META-MODEL
The SPE meta-model formally defines the information required
to perform an SPE study. This model is known as the SPE meta-
model because it is a model of the information that goes into
constructing an SPE model. Note that this meta-model is
different from the Performance Model Interchange Format
(PMIF) discussed in [15, 18, 20]. The PMIF defines information
exchanged between queueing network modeling tools (QNM)
while the meta-model defines information to be exchanged
between UML software design tools and performance tools.
Additional information, such as the mapping of components to
processing locations as well as the internal characteristics of
software locations may be exchanged between UML and
performance tools. This exchange may lay on PMIF or an
extension of it where needed.

3.1 SPE Meta-Model 2.0
This meta-model defines the essential information required to
create the software and system performance models as defined
in [14, 19]. The SPE meta-model class diagram is shown in
Figure 2a. Figure 2b shows the attributes of each object. (Note:

Object attributes are typically defined as part of the class
diagram. They are shown in Figure 2b here to conserve space.)
The following paragraphs describe the classes and their
relationships. The complete definition is in [21].

XMI representation of
UML models

(Use Case and
Sequence Diagrams)

UML-based
CASE tool

SPEED

Exporting to XMI

XPRIT

S-PMIF-based
software model

Values of
performance
indices (early

stages)

performance
annotations

Performance
Tool X

Evaluation
Process

Performance
Tool Y

Evaluation
Process

PMIF 2.0-based
system model

Queueing
Network
Solver S

Queueing
Network
Solver T

QNAP

Values of
performance
indices (late

stages)
Figure 1. The SPE interchange process

An SPE study is based on Projects which contain one or

more PerformanceScenarios. Each PerformanceScenario is
modeled by an ExecutionGraph. An ExecutionGraph is
composed of one or more Nodes and zero or more Arcs. A Node
may be connected to 0, 1, or 2 other Nodes via an Arc.* Several
types of Nodes may be used in constructing an ExecutionGraph:

ProcessingNode: represents processing steps at an
appropriate level of detail. There are four types of
ProcessingNodes:

1 BasicNode: represents a software processing step at the lowest
level of detail appropriate for the current development stage.

2 ExpandedNode: indicates that processing details are expanded
in a subgraph at the next level of detail. The subgraph, itself, is
another ExecutionGraph.

3 LinkNode: represents a component whose execution
requirements are specified in a previously saved performance
scenario.

* Note that some CompoundNodes may be connected to more than 2

attached nodes, but Arcs are not defined for those connections. So
Nodes can be connected to at most one predecessor and one successor
Node by an Arc.

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

4 SynchronizationNode: represents communication and
synchronization with a SynchronizationNode in another
PerformanceScenario. A SynchronizationNode may be a
SendNode or ReceiveNode.

4.1 SendNode represents a call from one process to another.
There are three types of SendNodes:

4.1.1 SynchronousCall: represents a call in which the caller
waits for a reply before proceeding

4.1.2 DeferredSynchronousCall: represents a call in which the
caller continues to execute and later requests the reply. If the
reply is not available at that time then the caller waits.

4.1.3 AsynchronousCall: represents a call with no reply.

4.2 ReceiveNode: represents the receipt of a request from
another process. There are 2 types of ReceiveNodes:

Performance
Scenario

Execution
Graph

Node Arc

1..n 0..n

Processing
Node

Basic
Node

Expanded
Node

Link
Node

Compound
Node

Case
Node

Pardo
Node

Split
Node

Repetition
Node

Parameter

Resource
Requirement

Device

Overhead
Matrix1..n

0..n

1..n

1..n

1..n

0..2

{All loops in the graph
must be repetition loops}

startNode :
Node

Synchronization
Node

Receive
Node

Reply
Node

NoReply
Node

Synchronous
Call

Deferred
Synchronous

Call

Asynchronous
Call

Send
Node

Send nodes are paired with receive nodes in
other execution graphs. SynchronousCall and
DeferredSynchronousCall nodes are paired
with ReplyNodes. AsynchronousCall nodes
are paired with NoReply Nodes

Facility
1..n

Project

1..n

Figure 2a. SPE Meta-Model Diagram

Arc
 FromNode
 ToNode
BasicNode
CaseNode

ArcList
NodeList

CompoundNode
Device
 Name
 DeviceKind
 Quantity
 SchedulingPolicy
 ServiceUnits
 ServiceTime
ExecutionGraph
 Name

 Description
 ModificationDateTime

NodeList
ArcList
IsMainEG

ExpandedNode
 EGName
Facility

Name
DeviceList

LinkNode
 PerformanceScenarioName
Node
 Name
 Type

Probability
Location

ResourceRequirement
OverheadMartix
 ResourceName
 DeviceName
 AmountOfService
Parameter
 Name
 Type
 Value
PardoNode
 ArcList

NodeList
PerformanceScenario
 Name
 InterarrivalTime
 NumberOfJobs
 Priority

ProcessingNode
 ProcessingNodeType
Project

Name
RepetitionNode
 RepetitionFactor
ResourceRequirement
 ResourceName
 UnitsOfService
SplitNode

ArcList
NodeList

SynchronizationNode
ReceiverPerfScenarioName
Receiver
ReceiverType

Figure 2b. Meta-model Attributes

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

4.2.1 ReplyNode: represents receipt of request that requires a
reply. It can be used with either a SynchronousCall or a
DeferredSynchronousCall.

4.2.2 NoReplyNode: represents receipt of a request for which a
reply cannot be sent (i.e., an AsynchronouCall).

CompoundNode: represents special processing structures,
such as Case constructs, repetition, and parallel execution.
There are four types of CompoundNode:

1. RepetitionNode: represents processing that is repeated and
a repetition factor specifies the number of repetitions.

2. CaseNode: represents conditional execution of
components, each with a probability of execution.

3. PardoNode: represents parallel execution paths, each with
a probability of being initiated. The parallel execution paths join
when they finish.

4. SplitNode: indicates the initiation of concurrent processes,
each with a probability of being initiated, that need not join.

A CompoundNode is also composed of one or more
ProcessingNodes and one or more Arcs.

The resources used by a Node are specified by one or more
ResourceRequirements. A ResourceRequirement may be
described by an optional Parameter. A Facility is a collection of
Devices. A ResourceRequirement is executed on one or more
Devices. A Device represents a unit that provides some
processing service. ResourceRequirements are associated with
Devices by an OverheadMatrix which specifies the amount of
service that each resource type requires from various devices.

The current version of the meta-model does not include
performance requirements. Currently, performance requirements
are defined informally, based on the type of problem and expert
judgment. Inclusion of performance requirements in the meta-
model will require that they be more formally defined. This is a
topic for future research.

The OverheadMatrix merits some additional explanation. It is
based on a concept in [19] and the SPE product, SPE•ED™
[16, 17] used in this demonstration. The OverheadMatrix is an
associative entity; it describes the relationship between a
ResourceName and a Device. An individual instance of
OverheadMatrix contains a ResourceName a DeviceName and
an AmountOfService. For example, the ResourceRequirement
may specify the number of instructions to be executed. The
OverheadMatrix would specify the CPU processing time per
instruction as the AmountOfService for the CPU Device. The
class may be viewed as a table with each instance corresponding
to a row that specifies a distinct ResourceName/DeviceName
pair such as:

• instructions and the CPU processing time per instruction,

• database updates and the CPU processing time per update

• database updates and the Disk device visits per update.

The use of the overhead matrix makes it possible to
separate the portion of the model that describes the software
from the portion that describes the execution environment. This

is important for the SPE approach because developers are often
able to specify the software resource requirements such as the
number of database updates or messages transmitted, but are
unable to specify the device requirements for them. The
overhead matrix thus provides a mechanism to separate the two
and to obtain the ResourceName and UnitsOfService from the
software specification and the OverheadMatrix from other
sources such as measurement tools or computer experts.

3.2 Adjustments to the meta-model
The following changes were made to the original SPE meta-
model to reflect more recent information in [19]:

• The StateIdentification node was deleted and the
SynchronizationNode was added a subclass of ProcessingNode

• Facility was added

• Project was added

• Device definitions were modified to specify the specific
kind of device (such as CPU, Disk, etc.) rather than the generic
terms FCFS, NonFCFSDemandSpec, and NonFCFSTimeSpec.

Other minor changes were made to class attributes for the XML
implementation. For example, XML schemas allow names to be
used as IDs and ID references, so NodeIds were eliminated. We
changed the specification for names to match XML names in
http://www.w3.orgTR/2004/REC-xml-20040204/#id. Other
changes are similar to those made in [20].

3.3 S-PMIF XML Schema

The diagram of a portion of the XML schema corresponding to
the S-PMIF meta-model is shown in Figure 3. The complete
schema is at www.perfeng.com/pmif/s-pmifschema.xsd. The
following excerpt shows the schema definition for an
ExecutionGraph:

 <xs:complexType name="EG_type">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:sequence>
 <xs:choice>
 <xs:element name="BasicNode" type="BasicNode_type"/>
 <xs:element name="ExpandedNode"

type="ExpandedNode_type"/>
 <xs:element name="LinkNode" type="LinkNode_type"/>
 <xs:element name="SynchronizationNode"

type="SynchroNode_type"/>
 </xs:choice>
 <xs:element name="ResourceRequirement"

type="ResourceRequirement_type" "minOccurs="0"
maxOccurs="unbounded">

 </xs:element>
 </xs:sequence>
 <xs:element name="CompoundNode"

type="CompoundNode_type"/>
 </xs:choice>
 <xs:element name="Arc" type="Arc_type" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="EGname" type="xs:ID" use="required"/>

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

 <xs:attribute name="IsMainEG" type="xs:boolean"
use="required"/>

 <xs:attribute name="StartNode" type="xs:IDREF"
use="required"/>

 <xs:attribute name="ModificationDateTime" type="xs:dateTime"
use="optional"/>

 <xs:attribute name="SWmodelname" type="xs:string"
use="optional"/>

 </xs:complexType>

A sample s-pmif.xml ExecutionGraph specification for this
schema is in Section 5.

The schema has 2 differences from the meta-model. First, we
flattened the hierarchy in several areas to simplify the xml. For
example, both Nodes and ProcessingNodes are eliminated from
the schema and their attributes are moved to the nodes that
inherit those attributes.

Second, we made some elements and attributes optional in the
schema even though they are not optional in a software

performance model. For example, a workload intensity such as
interarrival time is necessary to solve a software performance
model; however, the developer of the UML software diagrams
may not know that information so it won’t be required in the
xml. Similarly, we made resource requirements, overhead
matrix and device specifications optional. We discuss this issue
further in the next section.

We also created three separate schemas for the meta-model:
Topology, Overhead_Matrix, and Device. They can be
combined by including the appropriate schemas. Thus,
Topology may include Overhead_Matrix which includes
Device. This is useful because one may use any of the schemas
without using the others. For example, if the overhead matrix
specification is coming from another source it does not need to
be included in the topology, and vice-versa.

Figure 3. Portion of the XML schema corresponding to the S-PMIF meta-model

4. SPE Model Interchange Process
Our vision for the SPE model interchange process (shown in
Figure 1) is:

1. A software architect, designer, or developer would use a
UML tool to create their model of the software and when ready
for the assessment, export the model into S-PMIF.

2. A software performance engineer would then import the S-
PMIF into a software performance modeling tool such as
SPE·ED. They would likely need to supplement the information
received from S-PMIF to add one or more of the following:
resource requirements, facility and device characteristics, and
the overhead matrix. The latter task may be skipped when the
original UML model is annotated with all the additional
performance information needed (using, for example, the UML

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

SPT profile [10]), and the translation tool is able to process this
additional information.

3. The software performance engineer would conduct
performance studies, and if problems are found, modify the
software performance model accordingly.

4. After resolving any serious problems with the software
architecture and/or design, they may export the model into
PMIF.

5. A performance engineer would import the PMIF into a
system or network modeling tool for further investigation of
performance properties of the network and computer system
such as the effect of locking and contention with other work in
the environment.

Results would then be exchanged in the reverse direction and
ultimately the software specialist would be able to view
suggestions for performance improvements and automatically
update the UML to reflect selected changes.Note that the
reverse direction is not shown in Figure 1, nor part of this work.
The meta-model and schema may need some modifications if
performance results or changes to the software model, such as
node coordinates or other revisions, are to be retained in the
UML for future evaluations.

This process differs from that proposed by other authors
primarily because we envision the use of a software
performance modeling tool such as SPE·ED, SP or HIT between
the UML and the system performance modeling step using
QNM, SPN, or PA. In our experience, we find many software
problems that must be corrected before detailed study of the
system performance is feasible. The case study described later
illustrates. When problems are detected, it isn’t enough to know
that the system is saturated. It is also necessary to determine
which parts of the software contribute to the problem and how
much, in order to determine options for solving an architecture
or design problem. For example, the case study has a problem
due to excessive disk usage. A software performance model can
identify which portions of the software use the disk and enable
the evaluation of different software alternatives that use less I/O.
A system performance model, however, will be limited to
hardware improvement alternatives such as more or faster
devices because the detailed studies require data that is typically
not available until later in development. At that stage, the time
and cost to change the architecture or design is prohibitive so
hardware alternatives are the only options that are viable. The
best solution may be a combination of software and hardware
improvements. Our model interchange process enables the
evaluation of all those options.

4.1 Philosophy
The model interchange strategy that we adopted from CDIF [4]
is “export everything you know and provide defaults for other
required information”; and “import the parts you need and make
appropriate assumptions for required data that is not in the
schema and thus the interchange file.”

We started with a use case for the SPE interchange process in
which developers did not have resource requirement
specifications, the facility or device information, etc. So it was

necessary to fill in many default values such as equal
probabilities for Case nodes, etc.

Our PMIF experience led us to the realization that everything
you know is not necessarily everything you use. For example,
SPE·ED uses visits to specify routing, but it knows about
probabilities, and it is relatively easy to calculate them. We
created an “import-friendly” PMIF; that is, we include both
visits and probabilities to make it easy on the import side. It is
easy to do on output and it lets many importers use simple tools
like XSLT rather than requiring custom code to do the import.
The redundant specifications are currently optional.

4.2 Exporting UML models to S-PMIF
This is a two-steps task: (i) exporting UML diagrams from a
CASE tool representation to an XML format, (ii) transforming
the exported result into a S-PMIF model.

For what concerns the first step, the XMI standard specifications
[9] have been adopted by almost all UML CASE tools to export
UML diagrams in XML. Actually XMI does not represent a
specific Schema for UML diagrams, but gives formal
specifications to build standard Schemas for UML diagrams.
This is the reason for small differences among the XMI
exporting results of UML tools. For the sake of this paper
experiments we have used the Poseidon tool [12].

The XPRIT tool performs the second step [3]. XPRIT is made of
two components: UML2EG, that allows to annotate Use Case
and Sequence Diagrams and generate from the annotated
diagrams an Execution Graph; UML2QN, that allows to
annotate a Deployment Diagram and generate from the
annotated diagram a Queueing Network representing the
hardware platform where the software shall run.

For the sake of these experiments we have used only UML2EG,
as the generation of a Queueing Network has been delayed in
the process. In particular, we have exploited the XPRIT
capability of producing the structure of an Execution Graph
(owing S-PMIF) from one or more UML Sequence Diagrams
(represented in XMI). The translation algorithm is based on
visiting the Sequence Diagram and recognizing elementary
patterns. For each pattern in a Sequence Diagram a
corresponding pattern of an Execution Graph is associated. The
whole structure of the Sequence Diagram is used to interconnect
elementary patterns in the Execution Graph. For example,
UML2EG is able to recognize sequential and parallel patterns,
synchronous and asynchronous communications.

Some accommodations were needed on the UML diagrams to
make XPRIT work on these experiments:

1. In order to avoid XPRIT considering the paths that depart
one after the other from the same SD axis (see draw()‘s leaving
Beam in Figure 4) to all be parallel paths, we added return
arrows to the diagrams;

2. XPRIT does not cope with object creation, as all the names
of components acting in a diagram need to be known in
advance; therefore object creation has been modeled as a
standard synchronous message between two existing
components;

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

3. Software loops are not part of the UML 1.x standards
(which is the basis of XPRIT), so message labels have been
exploited to delimitate the starting and the ending messages of a
loop in a Sequence Diagram.

Note that the last limitation will disappear with UML 2
Sequence Diagrams, where frames have been introduced to
delimitate special interaction patterns. A new XPRIT release is
being implemented based on UML 2, so many translation steps
will become straightforward.

4.3 Importing S-PMIF models into SPE·ED
SPE·ED uses the Document Object Model (DOM) to import the
s-pmif.xml. It first loads and parses the document, then uses
DOM calls to walk through each execution graph and create the
corresponding nodes and arcs in SPE·ED.

SPE·ED required a custom interface because, rather than reading
input from a file, it provides a graphical user interface that
enables a user to quickly draw a model. When the input comes
from an S-PMIF, there is currently no provision for location
coordinates for the nodes. Therefore another special routine is
required to “reformat” a graph and assign nodes to locations.

4.4 Exporting a pmif.xml model from
SPE·ED
SPE·ED also uses the Document Object Model (DOM) to export
the pmif.xml. It creates the entire document in memory, then
writes it to a file. This facilitates the export because elements
and attributes can be added in any order as long as they are
added in the correct location. It is a relatively small file, e.g., 2-
3K for the example in section 5, so the memory requirements
are modest.

SPE·ED uses a standard topology for models. Each facility
contains a CPU and one or more other types of devices. Within
a facility the QNM is assumed to be a central server model.
Workloads begin execution on the CPU and upon completion
transit to one of the other devices, then back to the CPU until
completion. A model can contain multiple facilities, each with
this central service topology.

Several other cases required special handling, such as generating
source, sink, and think nodes, transit probabilities, generating
separate servers when quantity of servers is greater than one,
name substitutions, etc. Details are in [20].

4.5 Importing a pmif.xml model into Qnap
Qnap reads the input (QNM specification and solving
parameters) from a file. Ultimately, Qnap would have an
interface that would read from its standard file OR the pmif.xml
file. However, we did not have access to Qnap source code and
we could not implement such an interface directly. Therefore,
we translated the pmif.xml file into a file in Qnap’s format.

The model translation from a pmif.xml file into a Qnap input
file was done using XSLT. We generated a specific XSLT file

that transforms a pmif.xml file into a file that can be directly
read and executed by Qnap. The direct use of XSLT was
feasible due to the possibility of specifying the stations by parts
in the Qnap input file. This might not be possible for some other
tools with stricter ordering in the input file, in which case two
possibilities would arise: The use of DOM (as used by SPE·ED
to export pmif.xml) or the use of XSLT together with a
conventional programming language. The use of XSLT is fairly
simple, therefore we would recommend XSLT when possible
for the translation into a tool’s file format.

For the case of a real implementation (i.e.,implementing an
interface from the tool that would read from the xml file
directly), the use of DOM would be necessary since XSLT can
only transform an XML file into another file. It would probably
be advisable to read the entire pmif.xml file into memory then
interpret and insert parameters into appropriate internal data
structures because of the ordering in the XML schema. That is,
some transformations may require information from elements
that have not been read yet.

5. EXPERIMENTAL RESULTS
For the proof of concept we used the Drawmod Architecture 1
model described in Chapter 4 of [19]. The sequence diagram for
the model is in Figure 4.

The following is part of the XML file resulting from the XPRIT
translation of the sequence diagram:

 <PerformanceScenario ScenarioName="drawmod_1"
SWmodelfilename="drawmod_1_SD.xmi">

 <ExecutionGraph EGname="drawmod_1" IsMainEG="true"
StartNode="create_Model">

 <BasicNode NodeName="create_Model"/>
 <BasicNode NodeName="draw_Model"/>
 <BasicNode NodeName="open"/>
 <BasicNode NodeName="find_modelID"/>
 <BasicNode NodeName="find_modelID_beams"/>
 <BasicNode NodeName="sort_beams"/>
 <CompoundNode>
 <RepetitionNode NodeName="r1">
 <ExpandedNode NodeName="e1" EGname="e1_ref"/>
 </RepetitionNode>
 </CompoundNode>
 <BasicNode NodeName="close"/>
 <Arc FromNode="create_Model" ToNode="draw_Model"/>
 <Arc FromNode="draw_Model" ToNode="open"/>
 <Arc FromNode="open" ToNode="find_modelID"/>
 <Arc FromNode="find_modelID"

ToNode="find_modelID_beams"/>
 <Arc FromNode="find_modelID_beams"

ToNode="sort_beams"/>
 <Arc FromNode="sort_beams" ToNode="r1"/>
 <Arc FromNode="r1" ToNode="close"/>
 </ExecutionGraph>
 <ExecutionGraph EGname="e1_ref" IsMainEG="false"

StartNode="retrieve_beam">
 <!--Details omitted -->
 </ExecutionGraph>
 </PerformanceScenario>

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

: ICAD

: Model
«create»

: Database

draw()
open()

find(modelID)

find(modelID, beams)

sort(beams)

loop *[each beam]
retrieve(beam)

«create»
: Beam

find(modelID, node1, node2)

retrieve(node1)

: Node
«create»

retrieve(node2)

«create»
: Node

draw()
draw()

draw()

draw()

close()

Figure 4. Drawmod Sequence diagram

Figure 5. Generated SPE·ED Model

 Software model

SPE· ED
TM

Display: Specify:

©1993-2003 Perfo rmance
Engineering Services

Solv e OK

Soft w are mod Names

Result s Values

Ov erhead Ov erhead

Sy st em modelServ ice lev el

SPE dat abase Sy smod globals

S ave S cenario Open scenario

Add

Link Expand

Insert node

drawmod_1

create_Model

draw_Mode l

o pen

find_modelID

find_modelID_beams

sort_be ams

r1

e1_ref

c lo se

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

The Execution Graph has a Boolean attribute (IsMainEG) that
indicates whether it is the main graph in the file or a sub-graph.
It is followed by a sequence of nodes followed by a sequence of
arcs between nodes. As long as the Sequence Diagram follows a
sequential execution, all Basic Nodes are generated. Upon
finding a loop, a Repetition Node is appended that refers to a
subgraph identified from the EGname attribute “e1_ref.” The
complete file is in [21].

Next the s-pmif.xml model was imported into SPE·ED and the
software model was created. The generated software model is
shown in Figure 5. Note that the text does not fit into the
execution graph nodes because the operating system routines
use spaces to insert line breaks; however, the XML names
cannot contain spaces. Some translation of names will be
necessary to create “prettier” models.

Next, we added the resource requirements (from the Drawmod
example in [19]), then the model was solved. In general,
software performance engineers will need to use the techniques
in [19] to estimate requirements that are not in the interchange
file. That is an important step in the overall process, but it is
beyond the scope of this paper.

The model was solved and problems were identified in the
architecture. After making the architectural changes we
produced Drawmod Architecture 3 (also described in [19]) and
confirmed that it resolved the performance problems. Note that
in this case, SPE·ED has the ability to solve the system execution
model both analytically and with simulation to quantify the
response time, utilization, etc. for computer resources so it isn’t
necessary to export the model to get those results. There are
other reasons why one might want to export the model, such as:

• to compare solutions

• to get additional metrics such as queue lengths

• to study additional facets of the environment that might not
fit the central server assumptions mentioned in section 4.4.

So the next step in the proof of concept is to export the model
from SPE·ED into pmif.xml. The following shows an excerpt
containing the generated service request (produced from
SPE·EDs conversion of the software performance model into
the system performance model):

 <ServiceRequest>
 <DemandServiceRequest

WorkloadName="Drawmod_Architecture_3"
ServerID="CPU" ServiceDemand="3.574195E-03"
TimeUnits="sec" NumberOfVisits="2219">

 <Transit To="Disk_A" Probability="4.867057E-02"/>
 <Transit To="Disk_B" Probability="4.867057E-02"/>
 <Transit To="Display" Probability="0.9022082"/>
 <Transit To="UserThink" Probability="4.506535E-04"/>
 </DemandServiceRequest>
 <WorkUnitServiceRequest

WorkloadName="Drawmod_Architecture_3"
ServerID="Disk_A" NumberOfVisits="108">

 <Transit To="CPU" Probability="1"/>
 </WorkUnitServiceRequest>
 <WorkUnitServiceRequest

WorkloadName="Drawmod_Architecture_3"
ServerID="Disk_B" NumberOfVisits="108">

 <Transit To="CPU" Probability="1"/>
 </WorkUnitServiceRequest>
 <WorkUnitServiceRequest

WorkloadName="Drawmod_Architecture_3"
ServerID="Display" NumberOfVisits="2002">

 <Transit To="CPU" Probability="1"/>
 </WorkUnitServiceRequest>
 </ServiceRequest>

The pmif.xml is then imported into Qnap. In this specific
implementation the import consists of an XSLT translation from
a file in pmif’s format into a file in Qnap’s format. The
generated Qnap input file for the Drawmod Architecture 3 is
shown below. It can be seen that the stations need first to be
declared and then they can be modified as many times as is
wanted, so when reading the file sequentially, the last
information read is the one that is taken. This makes the use of
XSLT very convenient.

/DECLARE/ QUEUE UserThin, CPU;
 QUEUE Disk_A, Disk_B, Display;
 CLASS Drawmod_;
 REAL TDrawmod;

/STATION/ NAME= UserThin;
 TYPE = INFINITE;

/STATION/ NAME= CPU;
 SCHED = PS;

/STATION/ NAME = Disk_A;
 SERVICE = EXP(0.03);
 SCHED = FIFO;

/STATION/ NAME = Disk_B;
 SERVICE = EXP(0.03);
 SCHED = FIFO;

/STATION/ NAME = Display;
 SERVICE = EXP(0.001);
 TYPE = INFINITE;

/STATION/ NAME = UserThin;
 INIT(Drawmod_) = 10;
 SERVICE(Drawmod_) = EXP(60);
 TRANSIT(Drawmod_)= CPU, 1 ;

/STATION/ NAME = Disk_A;
 TRANSIT(Drawmod_) = CPU, 1 ;

/STATION/ NAME = Disk_B;
 TRANSIT(Drawmod_) = CPU, 1 ;

/STATION/ NAME = Display;
 TRANSIT(Drawmod_) = CPU, 1 ;

/STATION/ NAME = CPU;
 SERVICE(Drawmod_) =

EXP(0.000001610723298783236);
 TRANSIT(Drawmod_) = Disk_A, 4.867057E-02,
 Disk_B, 4.867057E-02,
 Display, 0.9022082,
 UserThin, 4.506535E-04 ;

The Qnap model is then solved and used for further study. The
results of the initial solution are reported in [20] and are not

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

shown here. This proof of concept illustrates the feasibility of
the SPE process using XML based interchange formats for using
multiple tools, rather than the particular results obtained from
the models.

5.1 Lessons Learned
We learned several lessons while conducting the experimental
proof of concept that are described in the following paragraphs.

We found that there may be different interpretations of a UML
sequence diagram and it may not be clear which is the proper
interpretation. For example, the sequence of draw()s in Figure 4
were interpreted by XPRIT to be parallel steps because they did
not have return arrows. We often find that, for convenience,
developers do not specify return arrows from calls, and we do
not want to require this specification just so the models can be
exported. For this exercise, we just inserted the return arrows. In
UML 2 there is a specific construct for parallel execution so this
issue will no longer be a problem. In general, the interchange
shows the value of viewing processing steps in different
notations to confirm that the processing is specified the way the
developer intended.

Note that the translated model in Figure 5 is far more detailed
than the Drawmod model in Figure 4-18 of [19]. Many of the
processing steps in the automatically generated model are not
interesting from a performance standpoint, and the extra steps
tend to “clutter” the model. This is a departure from the simple
model strategy described earlier. This is a common problem
with automatic translation of designs. In many cases it may be
easier to just create a new model and omit those details initially.
Some techniques for “pruning” an automatically generated
model would make it better suited for SPE.

This proof of concept illustrates one pass from UML to Qnap.
The SPE process will actually be iterative and there will be a
need to exchange multiple models in the forward as well as the
reverse direction. Thus, we will need to be able to retain
information that was added by tools during the evaluation so
that it won’t have to be re-created each time, such as resource
requirements, location coordinates, etc. We envision using the
S-PMIF to transfer this information to the design tool where it
will need to be imported, saved, and exported the next time this
SPE interchange process is used.

5.2 Future Work
This work was an initial step in the overall SPE interchange
process. Several additional steps are planned:

• Update XPRIT to export the new constructs in UML 2.0.

• Export resource requirements specified using the UML
Profile for Schedulability, Performance and Time.

• Define a meta-model and schema for the feedback path, in
order to support the transformation of “abstract” performance
results into “actual” design alternatives for UML or other CASE
tools.

• Define a meta-model and schema for the exchange of
performance results from system performance modeling tools
back to software performance engineering tools.

• Additional studies of additional models using the
interchange.

6. CONCLUSIONS
This paper has described two XML interchange formats that
support an SPE process that facilitates the use of the
performance assessment tool best suited to the analysis task,
state of the software, and amount of performance data available.
It used the original SPE meta-model [22] and PMIF 2.0 [20] as a
starting point and presented an updated SPE meta-model,
defined an XML schema based on the meta-model, implemented
extensions to the XPRIT software to export UML models into
the S-PMIF, implemented extensions to the SPE·ED software to
import S-PMIF models, and demonstrated the feasibility with an
experimental proof of concept of the SPE process using multiple
interchange formats and tools.

The interchange formats allow flexibility in when and how
performance specifications are provided and even allow some
specifications to be provided by measurement tools. The
interchange also enables a “plug and play” paradigm for using
performance modeling tools appropriate for the particular
problem to be studied.

Using a common format simplifies the tool implementation by
requiring only an import and export interface to the interchange
format rather than a custom interface to each tool that exchanges
information. The implementation may be done using an XSLT
translation external to tools that provide a file input/output
interface. Thus, users of the tool can create (and share) their
own interchange mechanism when tool vendors do not provide a
custom interface.

We have learned from this experience that real tool
interoperability in software performance assessment can be
achieved using XML technologies. The structures, the
methodologies and the automatisms that we have separately
defined and implemented before this experience have found
here a common ground to share their potential. The use of
different tools has highlighted some inconsistencies in the tools
thus lead to improvements in the individual tools.

We consider this experience as a starting point to investigate the
integration of CASE tools and performance tools. Internal
mechanisms need certainly to be refined, and a much wider
application context can be considered for tool integration. In
order to widen the scope of this work, other CASE tools and
performance tools can be considered, and their ability to interact
through these schemas (and their evolutions) shall be studied.

ACKNOWLEDGEMENTS
The authors would like to thank Ramon Puigjaner and the
ACSIC research group at the Universitat de les Illes Balears for
the help offered towards their collaboration.

7. REFERENCES
[1] S. Balsamo, et al., Model-based Performance Prediction in

Software Development: A Survey. IEEE Trans. on Software
Engineering, 2004. 30(5): p. 295-331.

[2] H. Beilner, J. Mäter, and N. Weissenburg. Towards a
Performance Modeling Environment: News on HIT. in

Copyright 2005 by the authors. All rights reserved.
Appears in Proc. Workshop on Software and Performance 2005

Proceedings 4th International Conference on Modeling
Techniques and Tools for Computer Performance
Evaluation. 1988: Plenum Publishing.

[3] V. Cortellessa, M. Gentile, and M. Pizzuti. XPRIT: An XML-
based Tool to Translate UML Diagrams into Execution
Graphs and Queueing Networks (Tool Paper). in Proc. of
1st Int. Conf. on the Quantitative Evaluation of Systems.
2004. Enschede, NL: IEEE Computer Society.

[4] EIA, CDIF - CASE Data Interchange Format Overview,
Engineering Department, Electronics Industries Association,
Arlington, VA, EIA/IS-106, January 1994.

[5] G. Gu and D. Petriu. XSLT Transformation from UML
Models to LQN Performance Models. in Proc. Workshop on
Software and Performance. 2002. Rome: ACM.

[6] P. Hughes, SP Principles, STC Technology, o59/ICL226/0,
July 1988.

[7] J.P. López-Grao, J. Merseguer, and J. Campos. From UML
Activity Diagrams to Stochastic Petri Nets: Application to
Software Performance Engineering. in Proc. Workshop on
Software and Performance. 2004. Redwood Shores, CA:
ACM.

[8] M. Marzolla and S. Balsamo. UML-PSI: the UML
Performance Simulator (Tool paper). in Proc. 1st Int. Conf.
on Quantitative Evaluation of Systems (QEST). 2004.
Enschede, NL: IEEE Computer Society.

[9] OMG, XML Metadata Interchange (XMI) 2.0, OMG Full
Specification, formal/03-05-02, 2002.

[10] OMG, UML Profile for Schedulability, Performance and
Time, formal/03-09-01, OMG Full Specification, 2003.

[11] D. Petriu and C.M. Woodside. Analyzing Software
Performance Requirements Specification for Performance.
in Proc. Workshop on Software and Performance 2002.
2002. Rome: ACM.

[12] Poseidon, www.gentleware.com,
[13] N. Savino, et al. Extending UML to Manage Performance

Models for Software Architectures: A Queuing Network
Approach. in Proc. 9th Int. Symposium on Modeling,

Analysis and Simulation of Computer and
Telecommunication Systems, SPECTS. 2002. San Diego,
CA.

[14] C.U. Smith, Performance Engineering of Software Systems.
1990, Reading, MA: Addison-Wesley.

[15] C.U. Smith, Definition of A Performance Model
Interchange Format, Performance Engineering Services,
PES-1001-94, October 1994.

[16] C.U. Smith and L.G. Williams, Performance Engineering
of Object-Oriented Systems with SPEED, in Lecture Notes in
Computer Science 1245: Computer Performance
Evaluation, M.R.e. al., Editor. 1997, Springer: Berlin,
Germany. p. 135-154.

[17] C.U. Smith and L.G. Williams, Performance Engineering
Evaluation of CORBA-based Distributed Systems with
SPEED, in Lecture Notes in Computer Science, R.
Puigjaner, Editor. 1998, Springer: Berlin, Germany.

[18] C.U. Smith and L.G. Williams, A Performance Model
Interchange Format. Journal of Systems and Software,
1999. 49(1).

[19] C.U. Smith and L.G. Williams, Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
2002: Addison-Wesley.

[20] C.U. Smith and C.M. Lladó. Performance Model
Interchange Format (PMIF 2.0): XML Definition and
Implementation. in Proc. 1st Int. Conf. on Quantitative
Evaluation of Systems (QEST). 2004. Enschede, NL: IEEE
Computer Society.

[21] C.U. Smith, et al., Software Performance Engineering
Model Interchange Format (S-PMIF 2.0): XML Definition
and Implementation Technical Report, L&S Computer
Technology, Inc., www.perfeng.com/paperndx.htm, Dec.
2004.

[22] L.G. Williams and C.U. Smith. Information Requirements
for Software Performance Engineering. in Proceedings 1995
International Conference on Modeling Techniques and
Tools for Computer Performance Evaluation. 1995.
Heidelberg, Germany: Springer.

