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Abstract

Systems using distributed object technology offer many advantages and their use is becoming
widespread. Distributed object systems are typically developed without regard to the locations of
objects in the network or the nature of the communication between them. However, this approach
often leads to performance problems due to latency in accessing remote objects and excessive
overhead for communication.  Thus, it is important to provide support for early assessment of the
performance characteristics of such systems.  This paper presents extensions to the software
performance engineering process and its associated models for assessing distributed object
systems, and illustrates with a case study.

1.  Introduction

Distributed-object technology (DOT) is the result of merging object-oriented techniques with
distributed systems technology. This approach makes objects the unit of computation and
distribution in a distributed environment by exploiting two key features of objects:  their ability
to encapsulate both data and operations in a single computation unit, and their ability to separate
their interface from their implementation.  DOT is enabled and supported by “middleware” such
as the OMG Object Management Architecture which provides referential transparency and high-
level inter-object communication mechanisms.

Systems based on DOT offer a number of advantages to software development organizations.
Developers can design and implement a distributed application without being concerned about
where a remote object resides, how it is implemented, or how inter-object communication occurs.
Applications can be distributed over an heterogeneous network, making it possible to run each
component on the most appropriate platform. In addition, “wrappers” can be used to make
commercial off-the-shelf (COTS) products and/or legacy systems appear as objects. This makes
it possible to integrate COTS or legacy software into more modern systems.

Distributed object systems are typically developed without regard to the locations of objects in
the network or the nature of the communication between them. However, this approach often
leads to performance problems due to latency in accessing remote objects and excessive
overhead due to inefficient communication mechanisms [WALD94].1  For example, referential

                                                
1 Waldo, et. al. also note that ignoring the difference between local and remote objects can lead to other problems

due to memory access, concurrency and partial failure.
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transparency may require that a local object be accessed using remote procedure calls rather than
a more efficient mechanism, such as shared memory. The performance of these systems must
then be “tuned” by fixing the locations of critical objects (e.g., making remote objects local) and
replacing slow communication mechanisms with more efficient ones (e.g., replacing remote
procedure calls by shared memory communication for local objects).

This “fix-it-later” approach introduces a number of problems. Systems delivered with poor
performance result in damaged customer relations, lost productivity for users, lost revenue, cost
overruns due to tuning or redesign, and missed market windows.  Moreover, “tuning” code to
improve performance is likely to disrupt the original design, negating the benefits obtained from
using the object-oriented approach.  Finally, it is unlikely that “tuned” code will ever equal the
performance of code that has been engineered for performance.  In the worst case, it will be
impossible to meet performance goals by tuning, necessitating a complete redesign or even
cancellation of the project.

Most performance failures are due to a lack of consideration of performance issues early in the
development process.  Poor performance is more often the result of problems in the design rather
than the implementation. As Clements and Northrup note:

“Performance depends largely upon the volume and complexity of inter-component
communication and coordination, especially if the components are physically distributed
processes.”  [CLEM96]

Our experience is that it is possible to cost-effectively engineer distributed-object systems that
meet performance goals.  By carefully applying the systematic techniques of software
performance engineering (SPE) throughout the development process, it is possible to produce
architectures and designs that have adequate performance and exhibit the other qualities, such as
reusability, maintainability, and modifiability that have made distributed systems based on
object-oriented technology so effective [SMIT93a], [SMIT97].

However, systems based on the OMG Object Management Architecture are relatively new and
offer new challenges for performance modeling. Our previous papers extended Software
Performance Engineering (SPE) methods to include specific techniques for evaluating the
performance of object-oriented systems. They focused on early life-cycle issues and introduced
Use Cases as the bridge between object-oriented methods and SPE [SMIT97],[SMIT98]. However,
they did not specifically address distributed systems or issues related to the use of CORBA.  This
paper extends our previous work to include extensions to the SPE methods that address:

• performance engineering methods appropriate for distributed systems,
• extensions to the SPE modeling techniques to evaluate performance issues that arise

when using an object request broker (ORB), and
• modeling techniques for CORBA synchronization primitives

In the following sections we: explain the SPE process extensions for distributed systems; cover
the performance issues introduced when distributed systems use the OMG Object Management
Architecture for inter-object communication and coordination; present the performance models
for distributed systems; and illustrate the models with a case study.
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2.  Related Work

Gokhale and Schmidt describe a measurement-based, principle-driven methodology for
improving the performance of an implementation of the Internet Inter-ORB Protocol (IIOP)
[GOKH97]. Their paper presents a set of principles (first formulated by Varghese [VARG96]) and
illustrates their use in improving the performance of the IIOP. Their work is aimed at improving
elements of the CORBA facilities.  Ours focuses on the architecture of an application that uses
CORBA facilities and the effect of the inter-process communication on its  performance.

Meszaros [MESZ96] presents a set of patterns for improving the performance (capacity) of
reactive systems. Their work is concerned with identifying a performance problem together with
a set of forces that impact possible solutions. The patterns then suggest solutions that balance
these forces. Petriu and Somadder [PETR97] extend these patterns to distributed, multi-level
client/server systems.  Our work focuses on early evaluation of software designs via modeling.
Meszaros and Petriu and Sommader propose ways of identifying solutions to performance
problems but do not specify whether the problems are identified by measurement or through
modeling. Since early modeling could be used to identify performance problems, their work
complements ours by providing guidelines for selecting solutions.

Smith and Williams describe performance engineering of an object-oriented design for a real-
time system [SMIT93a]. However, that approach applies general SPE techniques and only
addresses the specific problems of object-oriented systems in an ad hoc way. It models only one
type of synchronization, whereas this paper models three types.   Smith and Williams also
describe the application of Use Case scenarios as the bridge between design models and
performance models in [SMIT97] and [SMIT98].  In contrast, this paper extends the SPE process to
evaluate special performance issues in distributed systems using the earlier approach as a starting
point.

Smith presents several advanced  system execution model approaches for parallel and distributed
processing, including remote data access, messages for inter-process communication, and Ada
rendezvous [SMIT90a]. Those approaches were very  general and thus complex. They focused on
the features in the advanced system execution model with only a loose connection to the software
execution model.  It is viable to evaluate systems with those approaches, but it is better for very
early life cycles stages to have a simpler approximation technique based on the software
execution models to support architecture and design trade-off studies. This paper presents an
approximation technique for software execution models, a simpler approach for representing the
synchronization points in the execution graph and an automatic translation to the advanced
system execution model.

Other authors have presented general approximation techniques for software synchronization
(e.g., [THOM85]).  They also adapt the system execution model to quantify the effects of passive
resource contention.  Rolia introduced the method of layers to address systems of cooperating
processes in a distributed environment, and a modification to the system execution model
solution algorithms to quantify the delays for use of software servers, and contention effects
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introduced by them [ROLI95]. Woodside and co-workers propose stochastic rendezvous nets to
evaluate the performance of Ada Systems [WOOD95].  All these approaches focus on
synchronous communication, however adaptations to the various approximation techniques could
be used for an approximate analytical solution to the advanced system execution model described
in section 5.2.

3. Distributed System Extensions to the SPE Process

The SPE process for evaluating distributed-object systems is similar to that for other systems.
However, the models require some extension to evaluate details of concurrency and
synchronization.  We use the software performance engineering tool, SPE•ED, to evaluate the
performance models.  Other tools are available, such as [BEIL95],[GOET90],[ROLI92], [TURN92],
but the model translation would differ for those tools that do not use execution graphs as their
modeling paradigm.   The modeling approach described in the following sections is partially
determined by our tool choice.

Software Performance Engineering (SPE) is a systematic, quantitative approach to constructing
software systems that meet performance objectives.  In early development stages, SPE uses
deliberately simple models of software processing with the goal of using the simplest possible
model that identifies problems with the system architecture, design, or implementation plans.
These models are easily constructed and solved to provide feedback on whether the proposed
software is likely to meet performance goals.  As the software development proceeds, the models
are refined to more closely represent the performance of the emerging software. Because it is
difficult to precisely estimate resource requirements early in development, SPE uses adaptive
strategies, such as upper- and lower-bounds, and best- and worst-case analysis to manage
uncertainty.

Two types of models provide information for design assessment:  the software execution model
and the system execution model. The software execution model represents key aspect of the
software execution behavior; we use execution graphs to represent performance scenarios.  The
software execution model solution provides a static analysis of the mean, best-, and worst-case
response times for an initial evaluation against performance objectives.  The system execution
model uses the results of the software execution model solution to study the effect of contention
delays for shared computer resources.

SPE for distributed-object systems begins with the same steps used for all object-oriented
systems.  It begins with the Use Cases identified by developers during the requirements analysis
and system design phases of the development cycle.  Once the major Use Cases and their
scenarios have been identified, those that are important from a performance perspective are
selected for performance modeling.  These scenarios, represented using Message Sequence
Charts (MSCs) [ITU96], are translated to execution graphs which serve as input to SPE•ED. This
process, originally presented in [SMIT97], is summarized below:

1. Establish performance objectives - the quantitative criteria for evaluating the
performance characteristics of the system under development.
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2. Identify important Use Cases - those that are critical to the operation of the system or
which are important to responsiveness as seen by the user.

3. Select key performance scenarios - those which are executed frequently or those
which are critical to the perceived performance of the system.

4. Translate scenarios to execution graphs - the MSC Use Case representation is
translated to a software execution graph model.

5. Add resource requirements and processing overhead - estimates of the amount of
processing required for each step in the execution graph, and the amount of service
the software resources require from key devices in the hardware configuration.

6.   Solve the models - solving the execution graph characterizes the resource requirements
of the proposed software alone.

If the software model solution indicates problems, analysts consider architecture or design
alternatives to address the problems. If not, then analysts proceed to evaluate additional
characteristics of distributed systems.

SPE for distributed-object systems adds the following model features:
• Software execution model approximate techniques for estimating the performance

effect of distributed objects
• An advanced system execution model to study the effect of contention for shared

objects, and other delays for inter-process coordination.
The following section describes distributed object management, then section 5 describes these
additional model features.

4.  Object Management Performance Issues

Distributed-object technology is enabled by middleware2 that allows objects in a network to
interact without regard to hardware platform, implementation language, or communication
protocol.  The Object Management Group’s (OMG) Object Management Architecture (OMA) is
a widely-used specification for a set of middleware standards that allow development of
applications in a distributed, heterogeneous environment. The OMA consists of five principal
components [VINO97] (Figure 1):  object services, common facilities, domain interfaces,
application interfaces, and the object request broker.

                                                
2   Middleware provides a layer of services between the application and the underlying platform

(operating system and network software) [BERN96]. It provides application-independent services
that allow different processes running on one or more platforms to interact.
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The core of this architecture is the Object
Request Broker (ORB). The ORB is
responsible for managing communication
between objects without regard to: object
location, implementation and state, or inter-
object communication mechanisms. The
OMA Common Object Request Broker
Architecture (CORBA) specifies a standard
architecture for ORBs. The primary
performance issues that we consider are due
to this component. Aspects of the ORB that
impact performance can be divided into two
categories:  those that do not need to be explicitly modeled and those that do.

Aspects of the ORB that are vital to object interaction but do not require explicit modeling
include:

• the interface definition language:  declares the interfaces and types of operations and
parameters (e.g., float, string, struct, etc.)

• language mappings:  specifies how the interface definition language features are
mapped to various programming languages

• client stubs and server skeletons3:  provide mechanisms for interacting with the ORB
to convert (static) request invocations from the programming language into a form for
transmission to the server object and to similarly handle the response

• dynamic invocation and dispatch: a generic mechanism for dynamic request
invocations without compile-time knowledge of object interfaces

• protocols for inter-ORB communication: the mechanism for ORB-to-ORB handling
of request invocations

While these features affect the overall performance of a distributed system which includes an
ORB, they are modeled implicitly by measuring their resource requirements and including it as
“processing overhead” for each invocation of a server object.

The Object Adapter is the component of the ORB that actually connects objects to other objects.
We also model several aspects of the object adapter by measuring their effect and including it in
the processing overhead.  These aspects are:

• objects and interfaces registration
• object reference generation
• server process activation
• object activation
• static and dynamic invocations
• communication overhead for transmitting request invocations
• processing overhead for converting requests across languages, operating systems, and

hardware

                                                
3 In the OMA, communication is peer-to-peer, however, the terms client and server describe the roles  in a

particular communication when one object requests services from another.

Figure 1. The OMA Reference Architecture
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We measure the overhead of each of these aspects of the Object Adapter. Performance scenarios
derived from Use Cases then provide the processing details that quantify the number of times
each is used.  For example, a Use Case may specify typical operational conditions that excludes
system initialization (thus has no object registration, activation, etc.), and has a particular static
object invocation in a loop that is executed 250 times.  The corresponding performance scenario
would have 0 registrations, 0 reference generations, 0 activations, and 250 static invocations
(with processing overhead for invocation transmission and conversions derived from
measurements).  The software model solution quantifies the total processing requirement due to
object adapter overhead.

Five aspects of the ORB that must be explicitly modeled are:
1. object location
2. process composition
3. request scheduling
4. request dispatching
5. coordination mechanisms

Object location and process composition determine the processing steps assigned to each
performance scenario [WILL98]. Request scheduling and request dispatching are partially
determined by contention for called processes which is determined by the coordination
mechanism and other processing requirements of performance scenarios.  The models in section
5 quantify these aspects of the ORB.  Coordination mechanisms require extensions to the Use
Case and performance modeling formalisms.  These are described in the following section.

5.  Distributed System Models

Early in development, the SPE process for distributed systems calls for using deliberately simple
models of software processing that are easily constructed and solved to provide feedback on
whether the proposed software is likely to meet performance goals.  Thus, our approach is to first
create the software execution models as in steps 1 through 6 in section 3 without explicitly
representing synchronization -- it is represented only as a delay to receive results from a server
process.  A companion paper describes these approximate models and the delay-estimation
approach [SMIT98c].  Later in the development process, more realistic models, described in
section 5.2, translate the software execution models into a system execution model.  They are
solved with advanced system execution model techniques.4

In the following discussion we focus on synchronization and communication in distributed-object
systems that use a CORBA compliant ORB.  Even though the illustrations and discussions
describe communication in terms of “client” and “server” processes, they apply to more general
distributed systems.  The roles of “client” and “server” refer to a particular interaction and may
be reversed in subsequent interactions.  In addition, the “server” process may interact with other
processes, and multiple types of synchronization may be combined.  The case study in Section 6

                                                
4 These discussions assume some familiarity with the modeling notations used here, including execution graphs

and Message Sequence Charts (MSCs). More information about these notations may be found in [SMIT90a]
and [SMIT97].
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illustrates more complex synchronization patterns in a distributed system; each individual
communication is one of the three in the following section.

For this paper, we consider the three types of coordination mechanisms between objects currently
supported by the CORBA architecture [VINO97].

• Synchronous invocation:  The sender invokes the request and blocks waiting for the
response (an  invoke call).

• Deferred synchronous invocation:  The sender invokes the request and continues
processing. Responses are retrieved when the sender is ready (a send call, followed by
a get_response call to obtain the result).

• Asynchronous invocation:  The sender invokes the request and continues processing;
there is no response a (send call to a one_way operation or with INV_NO_RESPONSE
specified).

Synchronous or asynchronous invocations may be either static or dynamic; currently, deferred
synchronous invocations may only be dynamic.  SPE Model extensions to handle these
performance issues are discussed in the next section.

5.1 Approximate Models of  Software Synchronization
Our companion paper describes techniques for approximating the performance of the three types
of synchronization [SMIT98c].  The process is summarized here, details may be found in the cited
paper.  The approximate models are illustrated in the case study in section 6.

Analysts first create a separate performance scenario for each process in the Use Case, specify
resource requirements for processing steps and estimate the delay for communication and
synchronization with other processes.  The models may be iterative - the solution of each
independent performance scenario quantifies its processing time.  The processing time for the
called processes can be used to refine the estimate of the delay for communication and
synchronization.

This model is first solved without contention to determine if this optimistic model meets
performance objectives.  After correcting any problems, the system execution model solution
quantifies additional delays due to contention from other work.

5.2  Detailed Models of Synchronization
Detailed models of synchronization will connect client requests across processing nodes more
realistically reflecting the complex processing behavior.  We start with the separate performance
scenarios created in the approximate analysis step.  We insert special notations into the MSCs at
points when CORBA-based coordination is required.  These lead to the insertion of special nodes
into the execution graphs to represent synchronization steps.  An advanced system execution
model is automatically created from the execution graphs and solved to quantify contention
effects and delays.  These steps are described in the following sections.

5.2.1  MSC Extensions to represent CORBA Coordination
As noted in Section 3, the SPE process for distributed-object systems begins with a set of Use
Case scenarios expressed in the Message Sequence Chart (MSC) notation.  In order to construct
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performance models of these scenarios, it is necessary to specify the synchronization points and
type of synchronization in these scenarios.  Since the MSC notation [ITU96] does not provide
graphical syntax for representing the CORBA synchronization primitives, we use elements of the
UML notation [RATI97] for synchronous and asynchronous calls together with an extension of
our own to show the deferred synchronous invocation.  These are shown in Figure 2.

The notation for synchronous invocation shows a break in the processing when the caller waits
for the response.  The deferred synchronous notation represents continued processing with a
potential delay before receiving the reply.  The arrow representing the reply will be shown at the
point when it occurs, processing may continue in the called process.  The notation for
asynchronous invocation has a partial arrow for the call and no return arrow.

5.2.2 Software Execution Model Extensions

 The execution graph
notation also requires
extension to represent the
CORBA coordination
mechanisms. Figure 3
shows the new execution
graph nodes that represent
the three types of
synchronization.  The
appropriate node from the
left column of the figure is
inserted in the execution
graph for the calling
scenario. The called
scenario represents the
synchronization point with
one of the nodes from the
right column depending on whether or not it sends a reply.  The synchronization occurs in the
calling process so the called process need not distinguish between synchronous and deferred
synchronous calls.  Any of the rectangular nodes may be expanded to show processing steps that
occur between the dashed arrows or in connection with asynchronous calls.  The expansion may

c lien t server c lien t server c lien t server

Synchronous Deferred Synchronous Asynchronous

Figure 2.  MSC Representation of CORBA-based Synchronization

Calling process: Ca lled process:

N am e

N am e

N am e

N am e

N am e

S ynchronous ca ll:
ca lle r w aits  fo r rep ly

D efe rred  synchronous ca ll:
p rocess ing  occurs
w a it fo r reply

A synchronous ca ll:
no  rep ly

R ep ly

N o rep ly

Figure 3.  Execution Graph Nodes for Software Synchronization



10

contain other synchronization steps.  The called process may execute additional processing steps
after the reply is sent.

Next, the analyst specifies resource requirements for the processing steps and the number of
threads for called processes.  Each scenario is assigned to a processing node.  The software
execution model solution provides the model parameters for the advanced system execution
model.

SPE•ED uses the CSIM simulation tool to solve the advanced system model.  CSIM is a
simulation product that is widely used to evaluate distributed and parallel processing systems
[SCHW94]. The SPE tool solves the software execution model to derive the computer device
processing requirements, then creates the advanced system execution model and solves it with a
table-driven CSIM simulation model 5.  The solution is actually a hybrid solution.  The software
execution model solution provides summary data for processing phases [SMIT90a].  This provides
an efficient simulation solution at a process-phase granularity rather that a detailed process
simulation.

Two CSIM synchronization mechanisms provide the process coordination required for the
software synchronization: events and mailboxes.  An event consists of a state variable and two
queues (one for waiting processes and the other for queued processes).  When the event
“happens” one of the queued processes can proceed.  (The waiting queue is not used in this
synchronization model).  An event happens when a process sets the event to the occurred state.
A mailbox is a container for holding CSIM messages.  A process can send a message to a
mailbox or receive a message from a mailbox.  If a process does a receive on an empty mailbox,
it automatically waits until a message is sent to that mailbox.  When a message arrives, the first
waiting process can proceed.

A synchronous or deferred synchronous call is implemented in SPE•EDs advanced system
execution model with a send to the name mailbox of the called process (the name appears in the
processing node of the called process).  The message is an event that is to be set for the “reply.”
An asynchronous call is also implemented with a mailbox send; the message is ignored because
there is no reply.  The calling process executes a queue statement for the event;  synchronous
invocations place with the queue statement immediately after the send, deferred synchronous
invocations place it at the designated point later in the processing. The called process issues a
receive from its mailbox.  At the reply’s designated point in the processing, the called process
sets the event it received.  If there are multiple threads of the called process, the next in the
receive queue processes the request.  The event must be unique for the correct process to resume
after the set statement executes.

In addition to the standard results reported by SPE•ED, the following are reported for the
synchronization steps:

                                                
5 An approximate solution to the advanced system model is possible, but not currently in SPE•EDs repertoire.

Several of the approximations mentioned in the related work section might be applicable if they could be
automated and not require modeler’s intervention.
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• mean, minimum, maximum, and variance response time for called processes
• mean and maximum number of requests and the mean time in queue (mailbox) for

called processes
• throughput of called processes.

These results indicate when processing requirements should be reduced or the number of threads
increased to alleviate performance problems due to synchronization.  They also indicate what
proportion of the total elapsed time depends on other processes.  It shows the proportion of the
computer resource requirements used by each scenario, and the overall device utilization.

Next, the case study illustrates both the approximate models and the advanced system execution
model features.

6. Case Study

This case study is from an actual study, however, application details have been changed to
preserve anonymity.  The software supports an electronic virtual storefront, eStuff.6 Software
supporting eStuff has components to take
customer orders, fulfill orders and ship
them from the warehouse, and, for just-
in-time shipments, interface with
suppliers to obtain items to ship.  The
heart of the system is the Customer
Service component that collects
completed orders, initiates tasks in the
other components, and tracks the status
of orders in progress.

6.1 Approximate Model

The Use Case we consider is processing
a new order (Figure 4).  It begins with
TakeCustOrder, an MSC reference to
another, more detailed MSC.  An ACK is
sent to the customer,  and the order
processing begins.  In this scenario we
assume that a customer order consists of
50 individual items.  The unit of work for
the TakeCustOrder and CloseCustOrder
components is the entire order;  the other
order-processing components handle
each item in the order separately; the
MSC shows this repetition with a loop

                                                
6   eStuff is a fictional web site.  At the time this paper was written no such site existed.

custom er orderE ntry custSvc warehouse purchas in g

takeCustom erOrde r

ship Item

closeC ustom erOrde r

ack

lo op

opt

new Order

ack

getOrderData

orderD ata

workAlert

ge tD eta ils

workDetails

ge tOrderData

orderD ata

workProgress

isAvail(item )

s ta tus

workAlert

ge tD eta ils

workDetails

ge tOrderData

orderD ata

workProgress

msc new Order

Figure 4.  New Order Scenario
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symbol. The similar symbol labeled “opt”
represents an optional step that may occur when
eStuff must order the item from a supplier.

Figure 5 shows the execution graph for the CustomerService column in the Use Case in Figure 4.
Everything inside the loop is in the expanded node, ProcessItemOrder.  Its details are in Figure 6.
The two WorkAlert processing steps are also expanded; their details are not shown here. At this
stage we assume that each of the first three columns in Figure 4 executes on its own facility,
warehouse and purchasing share a processor.  This software model depicts only the
CustomerService processing node; we approximate the delay time to communicate with the other
processing nodes.

Note that we do not explicitly represent ORB processing that might occur for run-time binding of
the Client and Server processes.  This case study assumes that the processes are bound earlier.
Analysts could model the role of the ORB explicitly as another column in the diagrams, or
implicitly by adding processing overhead for each ORB request.

The next step is to specify resource requirements for each processing step.  The key resources
that we examine in this model are the CPU time for database and other processing, the number of
I/Os for database and logging activities, the number of messages sent among processors (and the
associated overhead for the ORB), and the estimated delay in seconds for the network
communication and execution time of called processes until the message-reply is received.
These values are shown in Figures 5 and 6.  They are best-case estimates derived from
performance measurement experiments.

Figure 5. Execution Graph
CustomerService: New Order

Figure 6. Execution Graph ProcessItemOrder
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Analysts specify values for the software resource
requirements for processing steps.  The computer
resource requirements for each software resource
request are specified in an overhead matrix stored
in the SPE database.  Figure 7 shows the
overhead matrix for this case study.   The
software resource names are in the left column of
the matrix; the devices in the facility are in the
other columns. The device names and quantity are
in the top section of the matrix. The values in the
middle part of the matrix specify the amount of
computer device processing required for each
software resource request.  For example, the
values for the Msgs row specifies that each
message specified in the software model results in 0.1 ms. CPU time for ORB processing7, 1
Disk I/O, and 1 message via the Net.  The values in the last row specify the service time in
seconds for each device in the facility.  When the device quantity is greater than one, SPE•ED uses
the optimistic assumption that the requests to devices are equally spread.

Figure 8 shows the best-case solution with one user and thus no contention for computer devices.
The end-to-end time is 480 seconds, most of that is in the ProcessItemOrder step (the value shown
is for all 50 items).  Results for the ProcessItemOrder subgraph (not shown) indicate that each
item requires approximately 9.8 seconds, most of that is in the ShipItem processing step.  Other
results (not shown) indicate that 7.5 seconds of the 9.8 seconds is due to estimated delay for
processing on the other facilities. Investigation also shows that the system cannot support the
desired throughput primarily due to network congestion.  Analysts can evaluate potential
solutions to both the
excessive delay for
remote processing and
the network congestion
by modifying the
software execution
model to reflect
architecture
alternatives.  An
alternative is selected
that processes work
orders as a group rather
than individual items
in an order.  The
changes to the software
execution model for
                                                
7  The CPU time for ORB processing is from performance benchmarks on a particular platform, and is unlikely to

generalize to other environments.  See [GOKH97] and [ORFA97] for other measurement values.

Figure 7.  Customer Service Overhead
Matrix

Figure 8.  Best-case elapsed time.
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this alternative are relatively
minor – the number of loop
repetitions is reduced to 2 (one for
orders ready to ship, the other for
orders requiring back-ordered
items), and the resource
requirements for steps in the loop
change slightly to reflect
requirements to process a group
of items. This alternative yields a
response time of 16.5 seconds
with the desired throughput of 0.1
jobs per second.

Thus, the overhead and delays due
to CORBA-based process
coordination were a significant
portion of the total end-to-end
time to process a new order.
Improvements resulted from
processing batches of items rather
than individual items.  These
simple models provide sufficient
information to identify problems
in the architecture before
proceeding to the advanced
system execution model.  It is
easy to examine alternatives with
simple models.  It is also important to resolve key performance problems before proceeding to
the more advanced models described in the next section.

6.2 Advanced System Execution Model
This section illustrates the creation and evaluation of the detailed models of synchronization.
Figure 9 shows the scenario diagram modified to show the synchronization. Note that all the
synchronization steps are either asynchronous or synchronous.  This situation is probably typical
in initial designs.  Deferred synchronous calls are only useful when the results of the call are not
needed for the next processing steps, and deferred synchronous communication may be more
complex to implement. Thus, it is sensible to select synchronous calls at this stage. The models
can be used to determine whether significant improvements are possible with deferred
synchronous calls.

 Figure 10 shows the synchronization nodes in the ProcessItemOrder step.  It first receives the
NewOrder message and immediately replies with the acknowledgement message thus freeing the
calling process.  Next it makes a synchronous call to OE:GetOrderData and waits for the reply.

custom er orderE ntry custSvc w arehouse purchas ing

ship Item

closeCustom erOrde r

ack

loop

opt

new O rder

ack

getOrderData

orderData

w orkA lert

getDetails

w orkD eta ils

getOrderData

orderData

w orkProgress

isAvail(item )

status

w orkA lert

getDetails

w orkD eta ils

getOrderData

orderData

w orkProgress

m sc new O rder

takeC ustom erOrde r

Figure 9.  New order scenario with synchronization
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The availability check is now explicitly
modeled with a synchronous call to WH:Avail?
The processing steps here are similar to those
in the approximate model.

Next we examine the approximate model for
the WH:WorkAlert expanded node in Figure
11.  It first invokes the WorkAlert on the
Warehouse (WH) facility. The WH facility
invokes the GetDetails process and the CS
server sends the reply.  Sometime later the
WH facility makes an asynchronous call to
report WorkProgress.  The delay would
correspond to the time required to ship the
item - we do not include this delay in the
model, but we do represent the resource
requirements it will ultimately require from the
facility.  For convenience the approximate
software model represents the total processing
required for steps, but at that stage does not
represent that the three steps actually occur in
three separate processes.  At the architecture
stage in development, these details have not
yet been determined.

In the advanced model, the WH:WorkAlert and
S:WorkAlert steps each contain a single
asynchronous call.  The other two steps occur
in separate processes. Figures 12 shows the
processing for the status update step (called
UpdateDB:Progress in the approximate software model).

Figure 13 shows the processing that occurs on the
Warehouse facility.  It receives the asynchronous request
from the CS facility, makes a synchronous call to
CS:GetDetails, makes a synchronous call to OE:GetOData,
then (after the order is shipped) makes an asynchronous call
to CS StatusUpdate.

Figure 10.  Synchronization in ProcessItemOrder.

Figure 11. Approximate model for
WH:WorkAlert.
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Table 1 summarizes the results
of the advanced system
execution model. They reflect
results for 10 hours simulated
time with a total of 3565
CS:NewOrders during that
interval.  The confidence level
for these results was computed
using the batch mean method;
the result is 0.172  for the
CS:NewOrder scenario.  It is
difficult to validate models of
systems that are still under

development.  Many changes occur before the software executes
and may be measured, and the early life cycle models are best-case
models that omit many processing complexities that occur in the
ultimate implementation.  Nevertheless, the results are sufficiently
accurate to identify problems in the software plans and quantify
the relative benefit of improvements.  In this study, the models
successfully predicted potential problems in the original
architecture due to network activity.

The maximum queue length and the queue time for WH:WorkAlert  suggests that more concurrent
threads might be desirable for scalability.  The simulation results would also reflect problems due
to “lock-step” execution of concurrent processes.  For example, note that the mean response time
for P:WorkAlert is slightly higher than for WH:WorkAlert even though they execute the same
processing steps and P:WorkAlert executes less frequently (see throughput values).  This is
because the asynchronous calls to WH:WorkAlert and to P:WorkAlert occur very close to the same
time and cause both processes to execute concurrently on the same facility.  This introduces
slight contention delays for the process that arrives second (P:WorkAlert).  In this case study the
performance effect is not serious, but it illustrates the types of performance analysis important for
this life cycle stage and the models that permit the analysis.

Note that most of the useful results in early life cycle stages come from the approximate software
model.  For example, the amount of communication and the synchronization points in the
architecture and design, the assignment of methods to processes, assignment of processes to

Figure 12. CS:StatusUpdate

Process

Figure 13.  WH:WorkAlert

Process

Table 1.  Advanced System Model Results
Response Time (secs.) TPut Queue

Mean Min Max Variance Mean Max Time
CS:NewOrder 14.4 0.8 72.7 79.51 .1
OE:OrderData 0.16 0 2.6 0.05 .5 0.092 5 0.19
CS:WorkDetails 0.2 0 3.7 0.05 .3 0.057 2 0.19
CS:UpdStatus 0.1 0 4.4 0.04 .3 0.004 3 0.01
WH:WorkAlert 1.3 0 9.1 1.14 .2 0.122 9 0.62
P:WorkAlert 1.4 0 9.3 1.16 .1 0.019 3 0.193
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processors, an approximate number of threads per process, etc., can all be evaluated with the
simpler models.

7.  Summary and Conclusions

Studying the performance of software architectures for distributed-object systems, particularly
those that have extensive communication and synchronization, is of growing importance. This
paper presents and illustrates the SPE process and model extensions for distributed-object
systems that use the OMG Object Management Architecture for inter-object communication and
coordination.    Two types of models are used: approximate software models for quick and easy
performance assessments in early life cycle stages, and advanced system execution models for
more realistic predictions and analysis of details of interconnection performance.

Approximate software models are constructed from Use Case scenarios identified during the
analysis and design phases of the development process. once these models have been
constructed, the advanced system execution models are created and solved automatically by the
SPE•ED performance engineering tool.  This simplifies the modelers task because it eliminates the
need for debugging complex simulation models of synchronization.  It also permits an efficient
hybrid solution that summarizes processing requirements by phases instead of detailed process
oriented simulations.

The five key aspects of the CORBA Object Adapter that determine the performance of systems
and are explicitly modeled were listed in Section 4.  Three of them -- process composition,
process location, and synchronization type, are actually architecture and design decisions.  Thus,
it makes sense to execute quantitative evaluations with these performance modeling techniques
to determine the appropriate choice.

Future work may explore the feasibility and usefulness of using approximate solution techniques
for the advanced system execution model.  This could be accomplished by implementing
additional solution techniques, or by using the software meta-model to exchange model
information with another tool for solution and evaluation [WILL95].
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